Publications

  1. D. Necas, et al., Synthetic Data in Quantitative SPM, Nanomaterials, 2021, https://doi.org/10.3390/nano11071746
  2. H.L. Chen, et al., Quantitative Assessment of Carrier Density by Cathodoluminescence. I. GaAs Thin Films and Modeling”, Phys. Rev. Applied 2021, 15, 024006, http://dx.doi.org/10.1103/PhysRevApplied.15.024006
  3. H.L. Chen, et al., Quantitative Assessment of Carrier Density by Cathodoluminescence. II. GaAs Nanowires”, Phys. Rev. Applied 2021, 15, 024007, http://dx.doi.org/10.1103/PhysRevApplied.15.024007
  4. A.P. Nugroho, et al., Vertically aligned n-type silicon nanowire array as a free-standing anode for lithium-ion batteries, Nanomaterials 11 (2021) 3137 (13pp); https://doi.org/10.3390/nano11113137
  5. A.D. Refino, et al., Versatilely tuned vertical silicon nanowire arrays by cryogenic reactive ion etching as a lithium-ion battery anode, Scientific Reports 11 (2021) 19779 (15pp); https://doi.org/10.1038/s41598-021-99173-4
  6. C. Tong, et al., Cathodoluminescence mapping of electron concentration in MBE-grown GaAs:Te nanowires”, Nanotechnology 22 185704 (2022); https://hal.archives-ouvertes.fr/hal-03539939
  7. N. Gogneau, et. al., Electromechanical conversion efficiency of GaN NWs: critical influence of the NW stiffness, the Schottky nano-contact and the surface charge effects”, Nanoscale 14, 4965-4976 (2022); https://pubs.rsc.org/en/content/articlelanding/2022/NR/d1nr07863a
  8. H. M. Ayedh, et al., Fast Wafer-Level Characterization of Silicon Photodetectors by Photoluminescence Imaging, IEEE Transactions on Electron Devices, vol. 69, no. 5, pp. 2449-2456, May 2022, https://ieeexplore.ieee.org/document/9743485
  9. M. Yin, Evaluation of contact resonance measurement data with neural networks: Master thesis. Braunschweig: Institut für Halbleitertechnik, TU Braunschweig (2022); https://nbn-resolving.org/urn:nbn:de:gbv:084-2022110409251
  10. C. Eldona, et al., A free-standing polyaniline/silicon nanowire forest as the anode for lithium-ion batteries, Chemistry – An Asian Journal, Vol. 17, issue 24 (2022); https://onlinelibrary.wiley.com/doi/full/10.1002/asia.202200946
  11. X. Liu, et al., Perspectives on Black Silicon in Semiconductor Manufacturing: Experimental Comparison of Plasma Etching, MACE, and Fs-Laser Etching, IEEE Transactions on Semiconductor Manufacturing, vol. 35, no. 3, pp. 504-510, Aug. 2022, doi.org/10.1109/TSM.2022.3190630
  12. X, Liu, et al., Millisecond-Level Minority Carrier Lifetime in Femtosecond Laser-Textured Black Silicon, IEEE Photonics Technology Letters, vol. 34, no. 16, pp. 870-873, 15 Aug.15, 2022, https://doi.org/10.1109/LPT.2022.3190270
  13. M. Fahrbach, et al., Damped Cantilever Microprobes for High-Speed Contact Metrology with 3D Surface Topography. Sensors 2023, 23, 2003, (2023). https://doi.org/10.3390/s23042003
  14. K. Chen, et al., Excellent Responsivity and Low Dark Current Obtained With Metal-Assisted Chemical Etched Si Photodiode, in IEEE Sensors Journal, vol. 23, no. 7, pp. 6750-6756, 1 April1, 2023, 10.1109/JSEN.2023.3246505
  15. O. E. Setälä, et al., Boron-Implanted Black Silicon Photodiode with Close-to-Ideal Responsivity from 200 to 1000 nm, ACS Photonics 2023 10 (6), 1735-1741, 10.1021/acsphotonics.2c01984
  16. M. Garín, et al., Black Ultra-Thin Crystalline Silicon Wafers Reach the 4n2 Absorption Limit–Application to IBC Solar Cells, Small, 19: 2302250. https://doi.org/10.1002/smll.202302250
  17. D. Li, et al., Linear extrapolation method based on multiple equiproportional models for thermal performance prediction of ultra-large array, Opt. Express 31, 15118-15130 (2023). https://doi.org/10.1364/OE.486394
  18. T. H. Fung, et al., Efficient surface passivation of germanium nanostructures with 1% reflectance, 2023 Nanotechnology 34 355201, https://iopscience.iop.org/article/10.1088/1361-6528/acd25b
  19. N. Fleurence, et al., Quantitative Measurement of Thermal Conductivity by SThM Technique: Measurements, Calibration Protocols and Uncertainty Evaluation, Nanomaterials 2023, 13, 2424. https://doi.org/10.3390/nano13172424
  20. B. Pruchnik, et al., Four-Point Measurement Setup for Correlative Microscopy of Nanowires,” Nanomaterials 2023, 13, 2451. https://doi.org/10.3390/nano13172451
  21. I. De Carlo, et al., Electrical and Thermal Conductivities of Single CuxO Nanowires, Nanomaterials 2023, 13, 2822. https://doi.org/10.3390/nano13212822
  22. E. Adhitama, et al (2023) On the direct correlation between the copper current collector surface area and ‘dead Li’ formation in zero-excess Li metal batteries, Journal of Materials Chemistry A, 11(14) p. 7724-7734. https://doi.org/10.1039/d3ta00097d
  23. A.D. Refino, et al., Impact of exposing lithium metal to monocrystalline vertical silicon nanowires for lithium-ion microbatteries, Communications Materials, 4(1), 2023. https://doi.org/10.1038/s43246-023-00385-0
  24. L. Siaudinyte, et al., Hybrid metrology for nanometric energy harvesting devices', Measurement Science and Technology, 34(9) p. 094008, 2023. https://doi.org/10.1088/1361-6501/acdf08
  25. K. Chen, et al., Harnessing Carrier Multiplication in Silicon Solar Cells Using UV Photons, in IEEE Photonics Technology Letters, vol. 33, no. 24, pp. 1415-1418, 15 Dec.15, 2021, https://acris.aalto.fi/ws/portalfiles/portal/76825952/Harnessing_carrier_multiplication_IEEE.pdf
  26. B. Radfar, et al., Optoelectronic properties of black silicon fabricated by femtosecond laser in ambient air: exploring a large parameter space, Opt. Lett. 48, 1224-1227 (2023), https://www.researchgate.net/publication/367348225_Optoelectronic_properties_of_black_silicon_fabricated_by_femtosecond_laser_in_ambient_air_exploring_a_large_parameter_space
  27. M. Fahrbach, Piezoresistive Microcantilever-Tastsonde und Messsystem für die Kontakt-Resonanz-Profilometrie, Braunschweig, 2024. https://nbn-resolving.org/urn:nbn:de:gbv:084-2024030414430
  28. F.E.B. Anang, et al., Area-Selective Growth of Zinc Oxide Nanowire Arrays for Piezoelectric Energy Harvesting, Micromachines 2024, 15(2), 2024. https://doi.org/10.3390/mi15020261