Logo PTB

Patente nach Kategorie

13 Ergebnisse für "Temperaturmessung".

Signalverarbeitung eines Gas-Chips

Der neue Miniatur-Gassensor der PTB bestimmt nicht nur präzise den Volumenstrom eines beliebigen Gases, sondern identifiziert dieses auch noch. Hierzu misst er die Wärmeleitfähigkeit, Temperaturleitfähigkeit und spezifische Wärme innerhalb einer Zehntelsekunde. Ein Milliliter Gas genügt bereits.

PTB-Zeichen: 0439

SQUID-basiertes Rauschthermometer zur Messung thermodynamischer Temperaturen im Tieftemperaturgebiet

Magnetfeld-Fluktuations-Thermometer (MFFT) sind SQUID-basierte Rauschthermometer die bei tiefen Temperaturen (typisch unterhalb von 5 K) eingesetzt werden. Sie detektieren die Fluktuationen des Magnetfeldes an der Oberfläche eines elektrisch leitenden Körpers („Temperatursensor“), die mit den im Inneren fließenden, thermisch angeregten Strömen verknüpft sind. Durch den neuen, vollständig berechenbaren Sensor ist es erstmals möglich, mit dem pMFFT direkt thermodynamische Temperaturen zu messen, wodurch die sonst nötige Rückführung auf die internationalen Temperaturskalen ITS-90 und PLTS-2000 entfällt.

PTB-Zeichen: 0389

Selbstentlüftung von Rohrleitungs-, Schauglasarmaturen, Fensterkammern oder optischer Zugänge

In vielen Rohrleitungs-, Schauglasarmaturen oder optischen Zugängen gibt es bauartbedingte Hochpunkte und Toträume, in denen sich Luft befinden kann. Im Betrieb von verfahrenstechnischen Anlagen, Kraftwerken oder Strömungs-Messsystemen ist häufig eine vollständige Entlüftung, beziehungsweise Minimierung der eingeschlossenen Luftmenge unerlässlich. Durch das neue PTB-Verfahren wird die eingeschlossene Luft im Betrieb der Armatur automatisch durch die Hauptströmung abgesaugt.

PTB-Zeichen: 0391

Durchflussmessvorrichtung zum messen eines Durchflussparameters

Der neue Miniatur-Gassensor der PTB bestimmt nicht nur präzise den Volumenstrom eines beliebigen Gases, sondern identifiziert dieses auch noch. Hierzu misst er die Wärmeleitfähigkeit, Temperaturleitfähigkeit und spezifische Wärme innerhalb einer Zehntelsekunde. Ein Milliliter Gas genügt bereits.

PTB-Zeichen: 0427

Sensor zur Bestimmung der Gaszusammensetzung

Der neue Miniatur-Gassensor der PTB bestimmt nicht nur präzise den Volumenstrom eines beliebigen Gases, sondern identifiziert dieses auch noch. Hierzu misst er die Wärmeleitfähigkeit, Temperaturleitfähigkeit und spezifische Wärme innerhalb einer Zehntelsekunde. Ein Milliliter Gas genügt bereits.

PTB-Zeichen: 0432

Verbesserung des Point-Bridge-Verfahrens

Der effektive Radius zwischen einer Wärmequelle und eines Thermosensors folgt keiner Konstanten. Messungen an Prüflingen mit einer großen Wärmeleitfähigkeit zeigen, im Gegensatz zu Prüflingen mit kleiner Wärmeleitfähigkeit, einen unterschiedlichen effektiven Radius, was zu unerwünscht großen Messunsicherheiten führt. Beim neuen miniaturisierten Messsensor der PTB ist deswegen das Heizelement und der Temperatursensor voneinander getrennt. Dabei umgibt eine spiralförmige Struktur das Thermoelement (s. roter Punkt im Bild) von mindestens zwei Seiten. Dadurch entsteht ein homogenes Wärmefeld um den Sensor, was zu einer geringeren Messunsicherheit führt.

PTB-Zeichen: 0458

Sensor zur Messung der richtungsabhängigen Wärmeleitfähigkeit

Die Bestimmung der Temperatur- und Wärmeleitfähigkeit an einem Punkt ist für vielfältige Anwendungen in der Ma-terialanalyse von entscheidender Bedeutung. Bislang war es schwierig Temperatur- und Wärmeeffekte in diesem Größenbereich genau zu bestimmen. Durch das neue in der PTB entwickelte System, dem Hotpoint-Sensor kann die Messsonde flexibel an die jeweilige Messanforderung angepasst werden. Aufgrund des geringen Platzbedarfs lassen sich erstmals auch Messungen an kleineren Ob-jekten mit geringen Dimensionen realisieren.

PTB-Zeichen: 8264

Wärmeleitfähigkeitsmessung

Die Erfindung betrifft ein Verfahren zur experimentellen Bestimmung der Wärmeleitfähigkeit von Feststoffen, Fluiden und Schüttgütern. Die Messung erfolgt mit mindestens zwei in die Probe eingebetteten Temperaturfühlern, von denen mindestens einer aktiv, das heißt elektrisch beheizt ist. Bei bekannter Heizleistung des aktiven Fühlers stellt die praktisch zeitunabhängige Differenz des zeitlichen Temperaturanstiegs je zweier Fühler das Maß für die gesuchte Größe dar.

PTB-Zeichen: 0036

Verfahren zur Messung der Temperaturleitfähigkeit

Die Erfindung betrifft ein Verfahren zur experimentellen Bestimmung der Temperaturleitfähigkeit (TLF) von Feststoffen, Fluiden und Schüttgütern. Die Messung erfolgt mit einer in die Probe eingebetteten Jouleschen Wärmequelle und mindestens einem Temperaturfühler in bekanntem Abstand von der Quelle. Bei impulsförmiger Heizleistung der Wärmequelle stellt die zeitliche Differenz des Temperaturmaximums des Fühlers zum Startimpuls das Maß für die gesuchte Größe dar. Zweckmäßigerweise wird man zwei Temperaturfühler in bekannten unterschiedlichen Abständen zum Heizer verwenden und die Zeitdifferenz zwischen den beiden Temperaturmaxima als Maß für die TLF nutzen.

PTB-Zeichen: 0038

Verfahren zum Messen einer thermischen Gesamt-Transportgröße

Zur Bestimmung der Wärmeleitfähigkeit prägt man der Probe einen definierten Wärmestrom auf. Der resultierende Temperaturgradient ist dann das Maß für die genannte Größe. Der Temperaturgradient führt immer auch zu einem Dichteunterschied in der Probe. Fluide Proben reagieren darauf generell mit natürlicher Konvektion, was zu erheblichen Messabweichungen führen kann.

Die Konvektion des Probefluids während einer Messung ließ sich bisher nur unter Schwerelosigkeit (z.B. im Fallturm) vermeiden. Allenfalls begrenzen lässt sie sich, wenn man bei geringen Temperaturdifferenzen (geringer Dichteunterschied) misst, bei kleinen Schichtdicken (Rayleigh-Kriterium) oder nur kurzzeitig nach einem transienten Messverfahren (Beharrungsvermögen der Fluidteilchen). Diese Vorkehrungen führen indes zu entsprechend geringeren Nutzsignalen, was sich negativ auf die Messunsicherheit auswirkt. Das vorgeschlagene Verfahren ermöglicht die Bestimmung der genannten Größe ohne Konvektion während der Messung. Hierzu lässt man das Probefluid bis zur Sättigung in ein geeignetes poröses Material (z.B. Laborglasfilter (Fritte)) strömen, das vorher evakuiert worden ist. Dann misst man die Wärmeleitfähigkeit des Gas- oder flüssiggefüllten porösen Materials. Die Wärmeleitfähigkeit des Probefluids erhält man mit Hilfe einer Kalibrierkurve (s.u.). Diese Kurve lässt sich mit einem einfachen mathematischen Zusammenhang erzeugen aus Kennwerten des porösen Materials (Wärmeleitfähigkeit, Porosität).

PTB-Zeichen: 0310

Transientenverfahren mit optimierter Skalierung

Die Erfindung betrifft ein Verfahren zum Messen einer thermischen Transportgröße einer Probe, mit den Schritten (a) Beaufschlagen der Probe mit einer zeitlich konstanten Heizleistung in einer linearen Wärmeeinleitstelle, (b) Erfassen einer zeitabhängigen Temperaturdifferenz zwischen einer ersten Temperaturmessstelle in einem ersten Abstand zur Wärmeeinleitstelle und einer zweiten Temperaturmessstelle in einem zweiten Abstand zur Wärmeeinleitstelle zu mehreren Zeitpunkten.

PTB-Zeichen: 0184

Temperatursensor Wärmeleitfähigkeit

Ein Sensor zur Messung der Wärmeleitfähigkeit einer Probe nach dem Heizstreifenverfahren, bei dem ein Heizstreifen durch einen durchfließenden elektrischen Strom erhitzt und der elektrische Widerstand zweier unterschiedlicher Längen des Sensors bestimmt wird, ermöglicht eine sehr genaue Messung mit ausreichend großen Messsignalen dadurch, dass der Heizstreifen durch einen ersten, einen ersten Heizkreis bildenden Leiterstreifen mit zwei Anschlüssen und durch einen zweiten, einen zweiten Heizkreis bildenden Leiterstreifen mit zwei Anschlüssen gebildet ist, wobei die beiden Heizkreise durch einen schmalen Spalt elektrisch voneinander getrennt sind, sich jedoch thermisch zu dem Heizstreifen mit einer vorgegebenen Gesamtlänge und einer vorgegebenen Breite ergänzen.

PTB-Zeichen: 0061

Domänenwandthermoelement

Thermoelement bestehend aus einem magnetischen Nanodraht mit in verschiedenen Bereichen unterschiedlich orientierter Magnetisierung die durch eine Domänenwand DW getrennt sind. Das Messprinzip basiert auf den unterschiedlichen Magneto-Seebeck-Koeffizienten bei unterschiedlicher Orientierung der Magnetisierung. Die gemessene Thermospannung ergibt sich aus der Temperaturdifferent zwischen dem Ort der DW und dem Referenzpunkt Durch Manipulation der Position der DW z.B. durch äußere Magnetfelder kann die Temperatur an beliebigen Positionen des Nanodrahts mit hoher Ortsauflösung rückgeführt gemessen werden.

PTB-Zeichen: 0370