

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Nationales Metrologieinstitut

# Traceability of on-machine measurements under a wide range of working conditions

Frank Keller, Matthias Franke, Norbert Gerwien, Lisa Groos, Christian Held, Klaus Wendt

Traceable in-process dimensional measurement (IND 62 TIM)

Workshop, Braunschweig

18th Mai 2015



### Introduction



#### **Motivation: In-process measurement**

- $\rightarrow$  Machining and measurement should take place on the same machine tool (MT)
- Need reliable and traceable measurements on MTs
  - Single part production:
    - $\rightarrow$  Compensation of volumetric errors of the MT for higher accuracy
    - $\rightarrow$  Task-specific measurement uncertainty e.g. via Monte-Carlo simulation
  - Serial production:
    - $\rightarrow$  Task-specific uncertainty can be determined by calibrated artefacts
    - → Task-specific error correction possible
- → Reliable and traceable measurements of workpieces in one and the same clamping on machine tools



Physikalisch-Technische Bundesanstalt 
Braunschweig und Berlin

#### **Overview**



- Simulation of environmental temperatures with the help of a mobile climate simulation chamber
- Measurement of the volumetric errors of a 5-axes machine tool with the help of a tracking laser interferometer
- Determination of thermally induced changes in a machine tool's geometry
- Volumetric error correction and measurement of residual errors of a machine tool
- Establishment of an uncertainty budget for onmachine measurements using test workpieces
- Assessing the fitness for purpose of on-machine measurements



#### Climate simulation chamber

- 5 x 10 x 6 m<sup>3</sup> (H x L x W)
- Range: 15 to 45 °C
- Inhomogeneity: Up to 2 K (vertical)
- Stability: ± 0.5 K (system oscillation)

# Machine tool: MAG SPECHT 500 DUO+



#### Machine tool used for the measurements:

- Horizontal dual-spindle machining center
- Three linear axes X, Y, Z
- Three rotational axes A, B1, B2 (only A and B1 were used)
- Two working spindles S1, S2 (only S1 was used)
- Working volume:
   630 mm x 730 mm x 860 mm

18.05.2016

- Kinematic chain: t1-(C1)-Y-X-b-Z-A-B1-w
- Fanuc controller, with ability of volumetric error correction
- Application: Machining of motor blocks



# Machine tool: MAG SPECHT 500 DUO+

#### Machine tool used for the measurements:

- Horizontal dual-spindle machining center
- Three linear axes X, Y, Z
- Three rotational axes A, B1, B2 (only A and B1 were used)
- Two working spindles S1, S2 (only S1 was used)
- Working volume: 630 mm x 730 mm x 860 mm
- Kinematic chain: t1-(C1)-Y-X-b-Z-A-B1-w
- Fanuc controller, with ability of volumetric error correction
- Application: Machining of motor blocks









# **Temperature profile**



Mapping of the volumetric errors of the MT at the temperatures:



18.05.2016

### **Procedure for mapping geometric errors**



- Determination of volumetric errors via sequential multi-lateration using laser measurements
- Rigid body error model according to ISO 230-1
- 21 parametric errors for the three linear axes
- 20 parametric errors for the two rotational axes
- Estimation of uncertainties by Monte-Carlo simulation
- Calculation of a 3d-correction table for discrete grid points in the working volume





Physikalisch-Technische Bundesanstalt 
Braunschweig und Berlin 18.05.2016



Nationales Metrologieinstitut Frank Keller

7

### **Volumetric error mapping: Results**





- Geometry errors vary with temperature
- Position and squareness errors are dominant errors and strongly affected by temperature effects
- Position errors are mainly influenced by thermal expansion of glass scales
- Straightness and rotational errors are less prone to temperature effects

# Volumetric error compensation for 20 °C





- Volumetric error correction could be validated
- Residual errors are still present:
  - Rigid body error model not completely fulfilled
  - Hysteresis effects
  - Environmental temperature and MT temperature not completely stable
  - Temperature in the working volume not exactly known

### Volumetric error compensation for 20 °C







#### Without volumetric compensation

Squareness and position errors are dominant.

#### With volumetric compensation

Maximum error could be reduced by 80 %. (from about 150  $\mu m$  to 30  $\mu m)$ 

# **Fitness for purpose**

#### Situation

18.05.2016

- Workpiece is produced and measured on a MT
- Is the measurement on the machine tool capable to ensure for the workpiece the compliance of the tolerances?
- E.g. VDA 5:  $U_{MP} \leq 0.15 \cdot Tol$

Strategy to determine task-specific uncertainties for serial production

- Same measurement task for many parts in serial production
- Use calibrated workpieces
- ISO 15530-3 / VDA 5.1





### Workpiece replica material standard (WR-MS)



- WR-MS should allow typical measurement tasks normally performed on the MT
- Machining and measurements are done for two temperature levels (20°C, and 25°C)
- Without and with volumetric correction of the machine tool



Physikalisch-Technische Bundesanstalt 
Braunschweig und Berlin





#### Nationales Metrologieinstitut



Repeat measurements on the MT N times ( $N \ge 10$ )

 $\rightarrow$  Get measurement results  $x_1, x_2, \ldots, x_N$ 

 $\rightarrow$  Mean value  $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$  and standard deviation  $u_x = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$ 

Calibrate workpiece on a CMM

 $\rightarrow$  Calibration value and standard uncertainty:  $y \pm u_y$ 

 $(u_v)$  was calculated by a simulation with the

Virtual Coordinate Measuring Machine)

$$\rightarrow$$
 Systematic error:  $b = \overline{x} - y$ 



Physikalisch-Technische Bundesanstalt 
Braunschweig und Berlin

Frank Keller

• Mean value  $\overline{x}$ 

### Task-specific measurement uncertainty



• Production and measurement of *M* parts  $(M \ge 5) \longrightarrow \overline{x}_j$ ,  $u_{x_j} y_j u_{y_j}$ ,  $b_j$  for j = 1, 2, ..., M



$$\overline{b} = rac{1}{M} \sum_{j=1}^M b_j$$

Result for a measurement on the machine tool with measured value *x*:

$$x_{cor} = x - \overline{b}$$
  $U_x = 2\sqrt{u_x^2 + u_y^2 + u_b^2}$ 

Physikalisch-Technische Bundesanstalt 
Braunschweig und Berlin

18.05.2016

### **Results: Task-specific measurement uncertainty**

|               | x-width      |                       |                              |                       |                     |                       |                     |  |
|---------------|--------------|-----------------------|------------------------------|-----------------------|---------------------|-----------------------|---------------------|--|
| <b>\$</b>     |              |                       |                              | <i>U</i> [μm]         |                     |                       |                     |  |
| Hole D        | Feature      | Nominal<br>value [mm] | Tolerance<br><i>Tol</i> [µm] | 20 °C,<br>uncorrected | 20 °C,<br>corrected | 25 °C,<br>uncorrected | 25 °C,<br>corrected |  |
| HOLE C HOLE E | x-width      | 202.5                 | 200                          | 5.5                   | 3.7                 | 7.4                   | 4.4                 |  |
|               | y-width      | 202.5                 | 200                          | 5.5                   | 3.8                 | 6.0                   | 5.3                 |  |
|               | Diameter C   | 27.0                  | 21                           | 2.8                   | 3.0                 | 5.3                   | 3.1                 |  |
|               | Diameter D   | 14.0                  | 18                           | 1.7                   | 2.0                 | 1.9                   | 2.0                 |  |
|               | Diameter E   | 14.0                  | 18                           | 2.0                   | 2.3                 | 3.3                   | 2.2                 |  |
|               | Distance D-E | 200.0                 | 200                          | 5.3                   | 3.5                 | 8.8                   | 3.7                 |  |
|               | y-position D | -115.0                | 200                          | 4.7                   | 6.1                 | 7.5                   | 4.1                 |  |
|               | y-position E | -115.0                | 200                          | 5.1                   | 4.3                 | 4.3                   | 4.1                 |  |

~

Frank Keller

'В

### **Results: Fitness for purpose**

1



|           | x-width      |                       |                              |                         |                     |                       |                     |  |
|-----------|--------------|-----------------------|------------------------------|-------------------------|---------------------|-----------------------|---------------------|--|
| <b>\$</b> |              |                       |                              | $Q = \frac{U}{Tol}[\%]$ |                     |                       |                     |  |
| Hole D    | Feature      | Nominal<br>value [mm] | Tolerance<br><i>Tol</i> [µm] | 20 °C,<br>uncorrected   | 20 °C,<br>corrected | 25 °C,<br>uncorrected | 25 °C,<br>corrected |  |
|           | x-width      | 202.5                 | 200                          | 2.8                     | 1.9                 | 3.7                   | 2.2                 |  |
|           | y-width      | 202.5                 | 200                          | 2.8                     | 1.9                 | 3.0                   | 2.7                 |  |
|           | Diameter C   | 27.0                  | 21                           | 13.3                    | 14.3                | 25.2                  | 14.8                |  |
|           | Diameter D   | 14.0                  | 18                           | 9.4                     | 11.1                | 10.6                  | 11.1                |  |
|           | Diameter E   | 14.0                  | 18                           | 11.1                    | 12.8                | 18.3                  | 12.2                |  |
|           | Distance D-E | 200.0                 | 200                          | 2.7                     | 1.8                 | 4.4                   | 1.9                 |  |
|           | y-position D | -115.0                | 200                          | 2.4                     | 3.1                 | 3.8                   | 2.1                 |  |
|           | y-position E | -115.0                | 200                          | 2.6                     | 2.2                 | 2.2                   | 2.1                 |  |



- Measurement of volumetric errors of a 5-axes MT under different, controlled environmental temperatures
- Monitoring the temperature dependent change of a MT geometry
- Measurement of residual errors
- Verification of temperature dependent volumetric error correction
- Determination of task-specific error correction and measurement uncertainty by the use of calibrated workpieces
- Assessing fitness for purpose for features of a test workpiece
- Demonstration of the general measurement capability of a MT

Acknowledgement



We gratefully acknowledge the funding from the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Bundesallee 100 38116 Braunschweig

Frank Keller Working Group 5.32 Coordinate Measuring Machines phone: 0531 592-5215 e-mail: frank.keller@ptb.de



As of 05/2016