Determination of volumetric machine tool errors by using a hole-bar material standard (Multi-Feature Bar – MFB)

fabien.viprey@lne.fr

.NE

le cnam

Dr. Ing. Hichem NOUIRALNEDr. Ass Prof Sylvain LAVERNHELURPAProf. Christophe TOURNIERLURPA

French National Metrology Institute LNE-Cnam Automated Production Research Laboratory of ENS Cachan – Univ Paris Saclay

JRP-TIM: Final Workshop at PTB, May 18th, 2016

5-axis machine tool

(Mikron UCP710 at LURPA)

Kinematic Architecture

5-axis machine tool

(Mikron UCP710 at LURPA)

Kinematic Architecture

Fabien VIPREY

Kinematic Architecture

JRP-TIM: Final Workshop at PTB, May 18th, 2016

Maximum range of relative deviations between actual and ideal position and maximum range of orientation deviations in the volume concerned, where the deviations are relative deviations between the tool side and the workpiece side of the machine tool [ISO230-1,2012]:

$$\begin{pmatrix} axis_{eff} - axis_{nom} \\ \vec{C_{L_{eff}}} - \vec{C_{L_{nom}}} \end{pmatrix}_{6\times 1} = \begin{pmatrix} \delta r \\ \delta u \end{pmatrix}_{6\times 1} = V_{xyz}$$

Maximum range of relative deviations between actual and ideal position and maximum range of orientation deviations in the volume concerned, where the deviations are relative deviations between the tool side and the workpiece side of the machine tool [ISO230-1,2012]:

$$\begin{pmatrix} axis_{eff} - axis_{nom} \\ \vec{C}_{L_{eff}} - \vec{C}_{L_{nom}} \end{pmatrix}_{6\times 1} = \begin{pmatrix} \delta r \\ \delta u \end{pmatrix}_{6\times 1} = V_{xyz}$$

LNE le cnam

Maximum range of relative deviations between actual and ideal position and maximum range of orientation deviations in the volume concerned, where the deviations are relative deviations between the tool side and the workpiece side of the machine tool [ISO230-1,2012]:

$$\begin{pmatrix} axis_{eff} - axis_{nom} \\ C\vec{L_{eff}} - C\vec{L_{nom}} \end{pmatrix}_{6\times 1} = \begin{pmatrix} \delta r \\ \delta u \end{pmatrix}_{6\times 1} = V_{xyz}$$

The aim of this study is to develop a novel material standard to identify motion errors:

- Usable on CMM, **3 or 5 machine tool**, by **on-line measurement,** to insure **traceable and accurate results**
- With large field of its application: Metrology room or Manufacturing shop

.NE le cnam

Introduction : Literature review

Introduction: Literature review

Hole-Bar

Actual Hole-Bar in litterature:

 \rightarrow One linear positioning error E_{xx}

→ One linear positioning error E_{xx} and one horizontal straightness E_{yx}

Identification of an additional parameter:

- Development of the Novel Hole-Bar
- Principle
- Technical attributes
- Calibration
- Reversal technique
- Intercomparison
- Application on Machine tool
- Measurement process
- Geometric model
- Results
- Conclusion

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ)

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ) PL _j CYL _j HOL _{i+1} PL _{j-1} CYL _{j-1} HOL _i PL _{R j}

HOL _{i-1} PL _{R j-1} Nominal Geometry

LNE

LUCPA

le cnam

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ)

ecnam

NE

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ)

le cnam

NE

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ) PL $_{L_j}$

le cnam

NE

LNE

LUCPA

le cnam

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ) PL L i (Δ) PL L i (Δ)

LNE

LUCPA

le cnam

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ) PL $_{\perp j}$

ecnam

NE

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ) PL $_{\perp j}$

NE

LUCPA

ecnam

The design of the Hole-Bar consists in a repetition of a 3D pattern in one direction (Δ) PL $_{\perp j}$

The identified points $O_i = (x_i, y_i, z_i)$ offers 3 intrinsic geometric parameters: 1 linear positioning and 2 straightnesses

NE

LUCP/

e cnam

Fabien VIPREY

Fabien VIPREY

Fabien VIPREY

Nominal coordinates (3D-CAD model)

$$\forall i \in \llbracket 1 ; N \rrbracket, \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}_{R_{HB}} = \begin{pmatrix} (i-1) \times L \\ 0 \\ 0 \end{pmatrix}_{R_{HB}}$$

le cnam

NE

JRP-TIM: Final Workshop at PTB, May 18th, 2016

•

LUCPA

Nominal coordinates (3D-CAD model)

$$\forall i \in \llbracket 1 ; N \rrbracket, \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}_{R_{HB}} = \begin{pmatrix} (i-1) \times L \\ 0 \\ 0 \end{pmatrix}_{R_{HB}}$$

NE

LUCPA

B

le cnam

Real coordinates (real geometry)

$$\forall i \in [\![1 ; N]\!], \ \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}_{R_{HB}} = \begin{pmatrix} (i-1) \times L & + E_{xx_{HB}}(i) \\ 0 & + E_{yx_{HB}}(i) \\ 0 & + E_{zx_{HB}}(i) \end{pmatrix}_{R_{HB}}$$

Nominal coordinates (3D-CAD model)

$$\forall i \in \llbracket 1 ; N \rrbracket, \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}_{R_{HB}} = \begin{pmatrix} (i-1) \times L \\ 0 \\ 0 \end{pmatrix}_{R_{HB}}$$

NE

LUCPA

B

le cnam

Real coordinates (real geometry)

$$\forall i \in [\![1 ; N]\!], \ \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}_{R_{HB}} = \begin{pmatrix} (i-1) \times L & + E_{xx_{HB}}(i) \\ 0 & + E_{yx_{HB}}(i) \\ 0 & + E_{zx_{HB}}(i) \end{pmatrix}_{R_{HB}}$$

Nominal coordinates (3D-CAD model)

$$\forall i \in \llbracket 1 ; N \rrbracket, \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}_{R_{HB}} = \begin{pmatrix} (i-1) \times L \\ 0 \\ 0 \end{pmatrix}_{R_{HB}}$$

ecnam

Real coordinates (real geometry)

$$\forall i \in [\![1 ; N]\!], \ \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}_{R_{HB}} = \begin{pmatrix} (i-1) \times L & + E_{xx_{HB}}(i) \\ 0 & + E_{yx_{HB}}(i) \\ 0 & + E_{zx_{HB}}(i) \end{pmatrix}_{R_{HB}}$$

Calibration of the Hole-Bar on accurate CMM → insures traceable measurements on machine tool

The reversal technique and substitution technique are applied to assess the calibration.

UD

Nominal coordinates (3D-CAD model)

$$\forall i \in \llbracket 1 ; N \rrbracket, \begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix}_{R_{HB}} = \begin{pmatrix} (i-1) \times L \\ 0 \\ 0 \end{pmatrix}_{R_{HB}}$$

LNE le cnam

Real coordinates (real geometry)

JRP-TIM: Final Workshop at PTB, May 18th, 2016

BO

E_{yx CMM}(3)

E^{NR}_{yx HB}(3)

30

 $E_{yx CMM}(3)$

 $E^{R}_{VX HB}(3)$

 $M_v^R(3)$

 $M_v^{NR}(3)$

50

E_{yx CMM}(5)

 $M_v^{NR}(5)$

E^{NR}yx HB(5)

50

E_{yx CMM}(5)

 $E^{R}_{VX HB}(5)$

 $M_{v}^{R}(5)$

 $E_{xx CMM}(X)$

40

E_{yx CMM}(4)

 $E^{NR}_{YX HB}(4)$

40

Е_{ух смм}(4)

E^R_{yx HB}(4)

 $M_v^R(4)$

 $M_v^{NR}(4)$

60

Е_{ух СММ}(6) Е^{NR}_{ух НВ}(6)

 $M_v^{NR}(6)$

E^R_{vx HB}(i) (Reversal)

60

Е_{ух СММ}(б)

E^R_{vx HB}(6)

 $M_v^R(6)$

i =Number of point of interest on Multi-Features Bar (HB)

X : Joint parameter of X-axis

20

E_{yx CMM}(2)

 $E^{NR}_{YX HB}(2)$

20

E_{ух смм}(2)

 $E^{R}_{VX HB}(2)$

 $M_{v}^{R}(2)$

 $M_v^{NR}(2)$

E^{NR}_{vx HB}(i) (No Reversal)

10

E_{yx CMM}(1)

 $E^{NR}_{y \times HB}(1)$ $M^{NR}_{y}(1)$

10

E_{vx CMM}(1)

 $E^{R}_{yx HB}(1)$

 $M_v^R(1)$

0

0

 $E_{xx CMM}(X)$

LNE le cnam

<u>MFB calibration set-up on</u> <u>CMM at LNE</u>

Fabien VIPREY

JRP-TIM: Final Workshop at PTB, May 18th, 2016

LUCPA

 $\overline{\mathbf{X}}_{\mathsf{CMM}}$

Хсмм

Reversal way

10

Linear positioning error along X_{HB}

$$E_{xx_{HB}}(i) = \frac{1}{2} \left[M_x^{NR}(i) + M_x^R(i) \right] - (i-1) \times L - E_{XX_{CMM}} - \epsilon_{ZZ_{CMM}}$$

LUCPA

LNE le cnam

AGIU

LNE le cnam

Fabien VIPREY

JRP-TIM: Final Workshop at PTB, May 18th, 2016

10

UCPA & LNE | e cham

lurph

& LNE le cnam

European Participants for intercomparison

NMI	Type of CMM	Size of CMM (mm³)	U of CMM (µm+L(m)xµm)	T in metrology room (°C)	Along the CMM- axis	Operator	Signatory of CIPM MRA
LNE	Renault Automotion 251310	2500 x 1300 x 1000	4,5 + L x 4,0	$\textbf{20,26} \pm \textbf{0,03}$	Z-axis	Fabien Viprey	Yes
СМІ	SIP CMM5	710 x 710 x 550	0.8 + L x 1.3	$19,\!73\pm0,\!09$	X-axis	Pavel Skalník	Yes
UM	Carl Zeiss UMC 850	1200 x 850 x 600	2,1 + L x 3,3	$\textbf{20,39} \pm \textbf{0,03}$	Y-axis	Mitja Mlakar	Designated by MIRS
PTB	UPMC 850 CARAT	850 x 1200 x 600	0.8 + L x 3.5	20,18 ± 0,04	X-axis	Norbert Gerwien	Yes
LNE	Renault Automotion 251310	2500 x 1300 x 1000	4,5 + L x 4,0	20,04 ± 0,03	Z-axis	Fabien Viprey	Yes

JRP-TIM: Final Workshop at PTB, May 18th, 2016

Results: Linear positioning error along X_{HB}

· LUCPA & LNE IC CNAM

Results: Straightness error along Y_{HB}

· LUCPA & LNE IC CNAM

Results: Straightness error along Z_{HB}

· LUGPA & LNE IC CHAM

Results: Straightness error along Z_{HB}

· LUCPA & LNE IC CHAM

Real time plateform for Identification of geometric errors

Developed end user interface

F=33,33 kHz T=30 μ s Resolution = 10 nm $U_{(k=2) RMP600} = 0,25 \mu m$ $U_{delay max at 240mm/min} = 0,47 \mu m$

· LUGPA & LNE IC CHAM

$\delta X = -E_{XX}(X) - E_{XY}(Y) - E_{XZ}(Z)$

Geometric model of 3-axis chain of the investigated machine tools

Fabien VIPREY

 $\mathbf{p}_{w/R_{w}}$

 $R_{f} \mathbb{T}_{Rw}$

parameters

LNE | e cnam

Identification procedure of motion errors of X-axis

Application on Mikron UCP710 5-axis machine tool:

 E_{XX} , E_{YX} , E_{ZX} , E_{AX} , E_{BX} and E_{CX} along the X-axis identified on the points of interest O_i of the Hole-Bar:

Calibration using a Laser Tracer

60 E_{YX} MFB E_{XX} MFB $-E_{YX}$ Laser Tracer E_{XX} Laser Tracer 50 $-E_{ZX}$ MFB E_{ZX} Laser Tracer 40 E_{YX} et E_{ZX} (μm) $E_{XX} \ (\mu m)$ 30 20 10 -10 -100 400 200 400 500 600 700 500 300 í٥. 100 200 300 600 700 800 X (mm)X (mm)20 E_{AX} , E_{BX} et E_{CX} ($\mu m/m$) -20 -40 -60 E_{AX} MFB E_{AX} Laser Tracer -80 E_{BX} MFB $-E_{BX}$ Laser Tracer -100 E_{CX} MFB **x4** E_{CX} Laser Tracer 100 400 200 300 500 600 700 800

X (mm)

VGJU

Le progrès, une passion à pas

LNE le cnam

Calibration using a Laser Tracer

 E_{XX} MFB

50

40

20

10

-10∟ 100

 $E_{XX} (\mu m)$ 30 E_{XX} Laser Tracer

200

300

 E_{YX} MFB E_{YX} Laser Tracer $-E_{ZX}$ MFB E_{ZX} Laser Tracer et E_{ZX} (µm) E_{YX} 400 100 200 300 500 600 700 800 X (mm)

UP

NE le cnam

400

X(mm)

500

600

700

A variation between the results can be observed \rightarrow definition of end-point reference straight line (end-points), effects of the angular errors and boundary conditions

Fabien VIPREY

JRP-TIM: Final Workshop at PTB, May 18th, 2016

Conclusion

- Novel Hole-Bar made of thermo-invariant material (Invar) was defined and developed to calibrate machine tool
- The design of the Hole-Bar involves several patterns, including cylindrical and plane geometric entities, useful to extract 12 points of interests → providing 3 geometric errors (linear positioning error and 2 straightnesses) for each selected position
- The developed Hole-Bar was carefully calibrated on an accurate CMM, traceable to the SI meter definition at LNE
- The reversal technique was applied to calibrate the Hole-Bar in order to separate the motion errors of the CMM and the true intrinsic parameters of the Hole-Bar
- An intercomparison was shuttled between 4 european NMIs (PTB, CMI, UM, LNE)
- The Hole-Bar was used for the calibration of the Mikron UCP710 machine tool to evaluate the efficiency

LNE le cnam

Further works

- Submission of a journal paper about the intercomparison
- Identification of the motion errors of the rotary axes using the Hole-Bar
- Application of a compensation

Dissemination

- 2nd MacroScale International Conference, Wien (Austria), October 2014
- Article submitted for publication in the journal: Precision Engineering

Novel multi-feature bar design for machine tools geometric errors identification

ecnam

Thank you for your attention!

The authors sincerely thank the EMRP organization. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union (IND62: JRP-TIM)

NE

le cnam

within EURAMET and the European Union

Fabien VIPREY - LNE - LURPA

The EMRP is jointly funded by the EMRP participating countries

fabien.viprey@lne.fr

Christophe TOURNIER – LURPA Sylvain LAVERNHE – LURPA Hichem NOUIRA – LNE

French National Metrology Institute LNE-Cnam Automated Production Research Laboratory of ENS Cachan – Univ Paris Saclay