Spectrally resolved frequency comb interferometry for long distance measurement

Steven van den Berg, Sjoerd van Eldik, Nandini Bhattacharya

Workshop Metrology for Long Distance Surveying
21 November 2014
Outline

• Introduction to VSL
• Introduction to the frequency comb
• Many-wavelength interferometry with the fs frequency comb
• Conclusions and outlook
About VSL

- VSL is the national metrology institute of the Netherlands, located in Delft
- Private company with public task
- Turnover: partly government, partly market
- About 100 FTE
- ISO 17025 accredited

VSL is named after Jean Henri van Swinden, who contributed to the development of the meter (end 18th century)
Principle of the frequency comb

- A frequency comb is the spectrum of a pulsed laser:

\[f_{rep} \]: repetition frequency
\[f_0 = \phi / 2\pi \] \(f_{rep} \): offset frequentie

\[f_n = f_0 + n \times f_{rep} \]

Tool for optical frequency measurement
Modelocked pulsed lasers

Many frequencies / ‘modes’ oscillating at same time, phase locked/mode locked:

A pulse train can be viewed as a superposition of phase-locked wavelengths.

Frequency difference subsequent resonant modes:

$$
\Delta f = \frac{c}{2L} = \frac{1}{\text{roundtrip-time}}
$$

$L = 15 \text{ cm} \rightarrow \Delta f = 1 \text{ GHz}$
Pulsed lasers

\[f = f_a \]
\[f = f_a + \Delta f \]
\[f = f_a + 2\Delta f \]
\[f = f_a + 3\Delta f \]
\[f = f_a + 4\Delta f \]

And so on, for example 30 waves:

\[\frac{1}{\Delta f} \]

SUM
Properties of the frequency comb for distance measurement

- Stabilized pulse to pulse distance, acting as a **ruler** for distance measurement
- Wide spectrum, allowing for **spectral interferometry**
- Presence of **thousands** of individual and **stabilized laser modes**, available for homodyne interferometry
Why comb based distance measurement?

– Availability of many stabilized wavelengths

 Non-ambiguity range: e.g. 15 cm vs < 500 nm for single wavelength interferometry.
– Prospect of very long range applications (>> 1 km) due to long coherence length
– Direct traceability to SI second

– Potential applications:
 – Absolute distance measurement without displacement
 – Distance measurement between satellites
 – Surveying applications
Distance measurement based on cross-correlation

- Cross-correlation between pulses for path length difference equal to multiple of interpulse-distance.
- Apply model pulse propagation in air
- Compare to helium-neon laser interferometer

1st or 2nd order correlation

Agreement up to 50 m within 1 \(\mu\text{m}\)

Distance measurement based on spectral interferometry

Distance determined from unwrapped phase of spectral interference pattern

\[S(\omega) = |\hat{E}(\omega)|^2 \left[1 + \cos\left(2n(\omega)\omega L / c\right) \right] \]

Distance measurement based on spectral interferometry

• Limitations of spectral interferometry scheme:
 • Applicable to restricted range because of limited resolution of the spectrometer
 • Calibration of wavelength scale needed by using known displacement

• Ultimate goal: ability to resolve (and identify) individual comb modes
 • Allows for measurement of an arbitrary distance, not only close to multiples of L_{pp}
 • No indirect calibration needed using known displacement
 • Not only spectral interferometry but also homodyne multi-wavelength interferometry possible.
Unwrapping the comb

- Virtually imaged phase array (VIPA) to create fine angular dispersion (vertical plane)
- **Grating** for rough angular dispersion (horizontal plane)
- Imaging on CCD camera
- **Stitching** of vertical lines to get full frequency scale
Unwrapping the comb

- Comb lines separated into individual dots
- Repetition rate: 1 GHz
- 808-828 nm dispersed in about 9000 unique dots
- VIPA FSR: 50 GHz
Reference wavelength measured with wavemeter with <50 MHz uncertainty
Setup for distance measurement with a VIPA spectrometer

\[L_{pp} = c/T_{rep} \]

Train of ultrashort pulses

- A typical VIPA measurement
- with delayed arms

(c) Extracting the modulation frequency from the 2D image

Intensity (arb. units)

Number of comb modes
Comb interference at various delays

(a): 33 µm delay distance
(b): 2.5 mm delay distance
(c): 20 mm delay distance
(d): 73.9 mm delay distance
(e): 110 mm delay distance
(f): 147.5 mm delay distance
Reconstructed comb spectrum

- Stitching: 50 dots per vertical line and about 180 lines to get frequency scale with ~9000 comb modes

Delay: 33 μm

Delay: 2.5 mm
Distance determination from spectral interferometry

- Distance is derived from *phase change as function of wavelength*

- Interference \(I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(\frac{2\pi \cdot 2L \cdot n}{\lambda}\right) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(\frac{2\pi \cdot 2L \cdot n}{c} f\right) \)

- Phase \(\varphi = \frac{2\pi}{c} 2L \cdot n \cdot f \)

- Determine \(L \) from \(L = \frac{d\varphi}{df} \cdot \frac{c}{4\pi \cdot n} \)
Many-wavelength homodyne interferometry

- For a certain wavelength (dot): determine \(\text{phase} \) from fitted curve
- Determine \(\text{integer number of wavelengths} \) from spectral interferometry
- Determine distance from integer number and phase, applied to known wavelength
- Repeat for 9000 wavelengths and average
- Note: phase determination insensitive to intensity fluctuations
Comparison to counting interferometer

15 cm displacement: Average difference 8 nm, Std. dev 28 nm

Extending the measurement range to 50 m

- Setup of fiber connection to 50 m laboratory
- Optimization of beam expanding optics
- Alignment into high-resolution VIPA spectrometer
- Comparison to counting interferometer
- HeNe laser and comb share the same interferometer
 - Michelson interferometer with polarizing beam splitter
- Installation of single mode DFB laser for wavelength reference (with wavemeter)
Setup
Results

Based on spectral interferometry

\[\Delta L_{\text{He}} = L_{\text{HeNe}} - L_{\text{Heterodyne_comb}} \]

\[\Delta L_{\text{He}} \text{ vs. HeNe distance} \]
Conclusions

- Homodyne frequency comb interferometry has been demonstrated for distances up to 50 m
- All distances can be measured, even at maximum pulse separation.
- Exploitations of thousands of comb modes allows for interferometry with huge range of non-ambiguity.
- Agreement with counting HeNe laser within 1×10^{-8} at 50 m
- Spectral interferometry and multiwavelength interferometry merged in a single scheme.
- Only one frequency comb needed (compared to heterodyne comb interferometry).
- Interferometer stability in combination with non-perfect synchronization dominates measurement uncertainty
Next steps

- Distance measurement with reduced number of modes
 - Allows for use of fiber-based frequency comb
 - Simpler spectrometer can be used

41 GHz comb VIPA spectrometer
VSL team
Gertjan Kok
Stefan Persijn
Dirk Voigt
Arhur van de Nes
Steven van den Berg

TU Delft team
Sjoerd van Eldik (MSc 2014)
Morris Cui (PhD 2010)
Mounir Zeitouny (PhD 2011)
Nandini Bhattacharya
Paul Urbach
Joseph Braat

ISI team
Adam Lešundák
Ondrej Cip

This JRP receives funding within the European Metrology Research Program. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.