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Best-practice in making multivariate conformity assessment and decision-making is illustrated in case studies of 

healthcare products. Mathematical and statistical approaches to uncertainty evaluation are introduced in studies 

where typically there is no simple theory of how the perceived (‘response’) properties Z depend on the physical 

material (‘explanatory’) properties X of the material. This is needed when dealing with properties important for 

consumers, such as smoothness of material surfaces (skin) as perceived in measurements by human panellists, 

which in turn depend on the surface topography, friction and hardness, of interest to the manufacturer wishing 

to fashion the product to the consumer’s satisfaction. Principal component regression, consisting of an initial 

principal component analysis (PCA), can tackle correlation amongst the explanatory variables (X), thereby 

enabling both conformity assessment against explanatory variable X specification limits and multivariate 

regression including Z. A second challenge is that some measurements will be qualitative – such as the 

perceived ‘slipperiness’ in a current healthcare study – and require analysis on an ordinal scale, where many of 

the traditional tools of statistical analysis cannot be applied. Procedures for setting multivariate tolerance and 

specification regions and for calculating multivariate conformance properties are reviewed and applied. This 

includes validation of new software for bivariate conformance probability calculations developed in earlier parts 

of this NEW04 project. Methods for treatment of measurement uncertainty, reliability and decision risks in 

multivariate conformity assessment are developed, often drawing analogies with the treatment of corresponding 

product dispersion in traditional multivariate statistical process control. 
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1 Case study of healthcare products 
Various healthcare studies [Prall 1973

1
, Fall 2008

2
, Ringstad et al. 2015] are chosen here to illustrate 

novel mathematical and statistical approaches to uncertainty evaluation, as reported in an intermediate 

report on case study on health care products in the earlier NEW04 deliverable D3.2.3. Such cases are 

characterised as dealing with properties important for consumers, such as smoothness of material 

surfaces (skin) as perceived in measurements by human panellists, which in turn depend on the surface 

topography, friction and hardness, of interest to the manufacturer wishing to fashion the product to the 

consumer’s satisfaction.  

These healthcare cases provide a number of challenges. Mostly, there is no simple theory of how the 

perceived (‘response’) properties Z depend on the physical material (‘explanatory’) properties X of the 

material, that is, how the expression  XZ f  is to be formulated. Material and perceived quantities 

may be correlated in various ways and, in addition, limited measurement quality may enter on both 

sides of this equation.  

A principal component regression [Annex A] can deal with this and consists of an initial principal 

component analysis (PCA) tackling correlation amongst the explanatory variables (X), followed by a 

multivariate regression including Z. A second challenge is that some measurements will be 

qualitative – such as the perceived ‘slipperiness’, but also some of the physiochemical properties such 

as material hardness, of a skin cream in the current healthcare study – and require analysis on an 

ordinal scale, where many of the traditional tools of statistical analysis cannot be applied [Annex D]. 

The main aim of the current report is to present best-practice in making multivariate conformity 

assessment and decision-making, illustrated in case studies of healthcare products, following an earlier 

review in the NEW04 deliverable D3.1.2.  

2 Software for conformity assessment in multivariate cases 
An account of conformance probabilities for multivariate cases is given in Annex A of this report. 

Conformance probabilities in multivariate cases needed in the present healthcare studies can be 

evaluated using available software, such as in CRAN-R [2013]
3
 for multivariate Normal and t 

distributions. MathCad contains a number of multivariate functions which we employ. Further, 

software has been developed as part of D3.1.5 of the present NEW04 project and is available 

specifically for calculation of conformance probabilities for bivariate cases. Four possibilities are 

offered in the D3.1.5 software, accessible through a main menu: “Raw data”; “Conditional 

distributions”; “Marginal distributions”; and “Joint probability distribution”.  

                                                      
1
 J.K. Prall 1973 ”Instrumental evaluation of the effects of cosmetic products on skin surfaces with particular 

reference to smoothness”, J. Soc. Cosmet. Chem., 24: 693-707 
2
 Andreas Fall 2008, “Towards Surface Softness by topographic modeling of haptic properties”,  

Master of Science Thesis in Biomaterials, Department of Biological Physics, Chalmers university of technology, 

performed at SCA Hygiene Products AB, Göteborg, Sweden, 2008 
3
 CRAN-R 2013, ”Multivariate Normal and t Distributions: Computes multivariate Normal and t probabilities, 

quantiles, random deviates and densities”, Mvtnorm, http://cran.r-project.org/web/packages/mvtnorm/ 

http://cran.r-project.org/web/packages/mvtnorm/
http://cran.r-project.org/web/packages/mvtnorm/
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As we proceed with calculations of multivariate conformance probabilities in these healthcare studies, 

the target of each conformity assessment will be clearly specified: ‘Global’ conformity denotes the 

assessment of populations of typical entities, while ‘specific’ conformity assessment refers to 

inspection of single items or individuals, as defined by Rossi and Crenna [2006]
4
. 

3 Specific observations X assessment: healthcare study 
As a typical case to be studied in healthcare, Ringstad et al. [2015] have recently investigated how, for 

a set of topical formulations (skin creams), perception of various consumer-related quantities, Z, such 

as slipperiness and smoothness, when each cream is applied on human skin, is related to a number of 

physiochemical properties, X, measured when the same creams are applied on artificial skin 

substrates. 

We introduce the study by making firstly a multivariate analysis of the measured physiochemical 

properties, X, such as
0minBSFB (friction) and

0minBSFBA (adhesion), plotted in Figure 3.1 together with 

corresponding upper and lower specification limits (USL and LSL), respectively, as set by the 

manufacturer with due consideration to both what is feasible to manufacture but ultimately what is 

required by the consumer. 

 

Figure 3.1 Correlation plot between a pair of explanatory variables X of six topical formulations [physical 
material properties: (x-axis)

0minBSFB (friction) and (y-axis)
0minBSFBA (adhesion)] and corresponding 

specification limits for the healthcare case studies [Ringstad et al. 2015] 

 

A initial study of specific conformity assessment - inspection of single items - was made in this 

bivariate healthcare case, where so-called ’consumer’ and ’producer’ percentage risks and 

conformance probabilities associated with measurement uncertainty, um, [Pendrill 2014a] were 

calculated using the software MathCad, assuming Normal distributions  2, muxN  ; no measurement 

                                                      
4
 G.B. Rossi and F. Crenna 2006, “A probabilistic approach to measurement-based decisions,” Measurement, 39, 

pp. 101 – 11 
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correlation; and no correlation between the two physiochemical properties X (i)
0minBSFB (friction) 

and (ii)
0minBSFBA (adhesion), for two samples (B and F):  

Table 3.1 Summary of calculated bivariate X conformance probabilities in the healthcare study: specific 
conformity 

Specific conformity assessment 

 mi ux ,ˆ  

Sample B 

0minBSFB  
Sample B 

0minBSFBA  
Sample F 

0minBSFB  
Sample F 

0minBSFBA  

0,538(24) 0,34(11) 0,377(46) 0,162(25) 

USL 0,5 0,2 0,5 0,2 

Consumer 

risk 
(accept/non-

conforming) 

    USLxdxe
u

uxUSLxuxR i

USL

u

xx

m

mimi

x

m 


 








ˆ;

2

1
,ˆPr,ˆ

2

2

2

)ˆ(

,


 

 

 

  

0,375% 

 

6,426% 

Producer risk 

(fail/conform
ing) 

    USLxdxe
u

uxUSLxuxR i

USL

u

xx

m

mimi

x

m 


 








ˆ;

2

1
,ˆPr,ˆ*

2

2

2

)ˆ(

,


 

 

5,667% 

 

10,524% 

  

LSL 0,1 0,1 0,1 0,1 

Consumer 
risk 

(accept/non-

conforming) 

    LSLxdxe
u

uxLSLxuxR i

LSL

u

xx

m

mimi

x

m 


 








ˆ;

2

1
,ˆPr,ˆ

2

2

2

)ˆ(

,


 

 
0% 

 
0% 

 
1,565% 

 
0,657% 

Producer risk 

(fail/conform

ing) 
    LSLxdxe

u
uxUSLxuxR i

LSL

u

xx

m

mimi

x

m 


 








ˆ;

2

1
,ˆPr,ˆ*

2

2

2

)ˆ(

,


 

    

Univariate 

conformance 
probabilities 

    111

2

)ˆ(

1111,,1,
ˆ;

2

1
,ˆPr,ˆ

2

2

USLxLSLdxe
u

uxUSLxLSLuxP
x

x

m

USL

LSL

u

xx

m

mmconf 


 








 

 

5,667% 

 

8,959% 

 

99,625% 

 

92,918% 

Bivariate 

conformance 
probabilities 

(assuming 

zero 
covariance) 

   mconfmconf uxPuxP ,ˆ,ˆ
1,,2,1,,1,     

0,5077066% 

 

92,56923% 

Validation,  

Bivariate 

conformance 
probabilities 

Pc (NEW04 

D3.1.5) 

Joint probability distributions: Normal 0,507707% 92,5692% 
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There is clearly excellent agreement from this validation study between bivariate conformance 

probabilities calculated with the MathCad and MatLab softwares.  

4 Specific PC assessment: healthcare study 
It is evident from Figure 3.1 that there is some degree of correlation amongst the pair of material 

property values plotted. This is not a measurement covariance but rather an actual correlation between 

the different material properties, e.g. one might expect there would be a relation between the adhesion 

and friction when specimens are formulated, for instance. Such correlation is not unusual, particularly 

in investigations such as the present where one deliberately chooses to measure a number of 

explanatory properties on which the consumer response is expected to depend in various ways.  

Calculation of conformance probabilities will need to take account of this correlation, as will now be 

demonstrated with a principal component analysis [§A.2.2], as an example of PCA multivariate 

conformity assessment [§A.2.3] against principal component specification limits.  

Covariance and correlation matrices, respectively, for the pair of explanatory variables X [physical 

material properties,
0minBSFB (friction) and 

0minBSFBA (adhesion) in the present healthcare case for a set 

of topical formulations (skin creams), plotted in Figure 3.1] were deduced from the experimental data 

with a MathCad program for PCA developed in the project: 



















33

3

10957,710846,8

10846,8011,0
Cov(X) ; 










1959,0

959,01
Cor(X)   (4.1) 

using the MathCad function  

 

where the non-zero off-diagonal elements of Cor(X) indicate the degree of correlation. 

From Figure 3.1, it is clear that sample cream B had significantly different properties compared with 

the other 5 sample creams A, C – F. It is therefore somewhat of a challenge, with essentially only two 

distinct points amongst the six specimens, to provide reliable correlation estimates. The present 

healthcare study ideally would have to be extended to include additional specimen creams with other 

distinguishing ingredients, as studied recently for example by Lukic et al. [2012]
5
. The corresponding 

‘goodness of fit’ (R
2
 in Figure 3.1) can be measured as the group variance,   

i

ifit zz
2

i,
N-M

1
, 

                                                      
5
 M Lukic, I Jaksic, V Krstonosic, and S Savic 2012, ”A combined approach in characterisation of an effective 

w/o hand cream: the influence of emollient on textural, sensorial and in vivo skin performance”, Intl. J. Cosmetic 

Science, 34, 140 – 9, doi: 10.1111/j.1468-2494.2011.00693.x 

http://www.ncbi.nlm.nih.gov/pubmed/22085371
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calculated from the regression residuals, i, zzR ifiti  , with a corresponding number of degrees of 

freedom equal to M - N, for the M (= 6) specimens amongst N (= 2) fitted parameters. 

Bivariate conformance probabilities are calculated for each sample data of the pair of explanatory 

variables X and taking dispersion intervals on each point based on correlation matrix (while assuming 

no measurement uncertainty):  

  

According to the new bivariate conformance probabilities Pc software (NEW04 D3.1.5), allowing for 

the covariances in X (from eq.(4.1)), conformance probabilities for one sample (e.g. item F) of 36,9% 

assuming zero covariance, increase to 42,1% including covariance.  

4.1 Specific PC Region 
To eliminate this covariance, which confounds the calculation of conformance probabilities, a PCA 

analysis [§A.2.2] in the current healthcare case is now made in which two (k = 2) principal 

components p1, p2 of variation amongst the physiochemical properties were identified: 








 


759,0651,0

651,0759,0
P      (4.2) 

using the MathCad function  to calculate the eigenvalues, λk, followed by 

 as an evaluation of eq. (A.7) . 

The resulting covariance matrix: 













410761,30

0018,0
')Cov(X     (4.3) 

for the transformed data set PXX '  clearly shows, with the zero off-diagonal elements, the 

orthogonality of the two PCs.  
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Adopting the approach of Wang and Chen [1998], a multivariate PC specification region 

 PCiPCiPC yyS USLLSLX  '1
  [§A.2.4 (A.8)] in the current healthcare case is bounded by: 
































174,0

510,0

2,0

5,0

759,0651,0

651,0759,0
USLpUSL

T

pc  






























011,0

141,0

1,0

1,0

759,0651,0

651,0759,0
LSLpLSL

T

pc  

 

Figure 4.1 Correlation plot between a pair of explanatory variables X’ of six topical formulations [physical 
material properties: (x-axis)

0minBSFB (friction) and (y-axis)
0minBSFBA (adhesion)] and PC corresponding 

specification limits for the healthcare case studies [Ringstad et al. 2015]. Dispersion intervals on each point are 
based on correlation matrix (measurement uncertainty neglected) 

 

Figure 4.1 indicates that most of the variability is concentrated in the first principal component, which 

of course reflects – as observed in Figure 3.1 – that the observations amongst the six samples are 

clustered in essentially only two distinct points, thus providing a challenge to reliable correlation 

estimation. 

Applying the new PC specification limits to the modified data set PXX ' , conformance 

probabilities can be calculated, assuming no measurement uncertainty in the pair of explanatory 

variables X’ and taking dispersion intervals on each point based on correlation matrix (4.3):  
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Table 4.1 Summary of calculated bivariate PC conformance probabilities in the healthcare study: specific 
conformity 

Specific conformity assessment 

 mi ux ,ˆ  

Sample B 

0minBSFB  
Sample B 

0minBSFBA  
Sample F 

0minBSFB  
Sample F 

0minBSFBA  

0,629(24) -0,093(11) 0,392(46) -0,122(25) 

USL 0,510 0,011 0,510 0,011 

Consumer 

risk 
(accept/non-

conforming) 

    USLxdxe
u

uxUSLxuxR i

USL

u

xx

m

mimi

x

m 


 








ˆ;

2

1
,ˆPr,ˆ

2

2

2

)ˆ(

,


 

 

 

  

19,114% 

 

 

Producer risk 

(fail/conform
ing) 

    USLxdxe
u

uxUSLxuxR i

USL

u

xx

m

mimi

x

m 


 








ˆ;

2

1
,ˆPr,ˆ*

2

2

2

)ˆ(

,


 

 

18,878% 

 

 

  

LSL 0,141 -0,173 0,141 -0,173 

Univariate 

conformance 
probabilities 

    111

2

)ˆ(

1111,,1,
ˆ;

2

1
,ˆPr,ˆ

2

2

USLxLSLdxe
u

uxUSLxLSLuxP
x

x

m

USL

LSL

u

xx

m

mmconf 


 








 

 

18,863% 

 

99,998% 

 

77,700% 

 

99,584% 

Bivariate 

conformance 
probabilities 

(assuming 

zero 
covariance) 

   mconfmconf uxPuxP ,ˆ,ˆ
1,,2,1,,1,     

18,863% 

 

77,377% 

Validation,  

Bivariate 

conformance 
probabilities 

Pc (NEW04 

D3.1.5) 

Joint probability distributions: Normal 18,7409% 77,9757% 

Even in this PC assessment case, there is evidently excellent agreement from this validation study 

between bivariate conformance probabilities calculated with the MathCad and MatLab softwares.  

The conformance probabilities of 78% for sample F calculated in the above table wrt the PC 

specification limits (de facto free of correlation) indicate an error of 47% in the initial estimate of Pc 

given as 36,9% given earlier in §4 for a comparable dispersion. This error is of the same order of 

magnitude as the predicted % error in Pc estimated with 95% correlation to be 42,6% for specification 

limits set at ± 3σ by Law [1996] who studied the effects of covariance on bivariate conformance 

probabilities. Subaric-Leitis [2010] has also studied the effects of covariance on conformance 

probabilities. 

5 Global conformity assessment: conformance probabilities for 

bivariate cases – example health care products 
A study of global conformity assessment, that is, the assessment of populations of typical entities, 

applied to the topical formulations (skin cream) example from the healthcare case studies (D3.2.3), 

gave another opportunity to evaluate the new bivariate conformance probability software developed as 

part of D3.1.5.  

5.1 Global observations X assessment: healthcare study 
Global assessment in the present case means calculation of conformance probabilities for the typical 

values 









)5(17,0

)3(34,0
X  from an average over the six formulation samples of the pair of explanatory 
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variables X [physical material properties
0minVSFB (friction) and

0minVSFBA (adhesion) and measured 

with the ForceBoard set-up on artificial skin substrates BioSkin] with respect to specification limits  











2,0

5,0
USL ; 










1,0

1,0
LSL , using the “Joint probability distribution” option with a t-distribution of 

df = M – N = 4 degrees of freedom (M = 6 samples and N = 2 explanatory variables). The 

corresponding multivariate specification region in this case is:  XXX
S USLxLSLx  ˆˆˆ  

Assuming no correlation and no measurement uncertainty in the pair of explanatory variables X:  

Table 5.1 Summary of calculated bivariate X conformance probabilities in the healthcare study: global 
conformity 

Global conformity assessment 

 ,x̂  
σp calculated from diagonal elements of Cov(X) 

Mean 

0minBSFB  
Mean 

0minBSFBA  

0,342(103) 0,165(89) 

USL 0,5 0,2 

LSL 0,1 0,1 

Univariate conformance 
probabilities      

 
 

11

ˆ2

)ˆ(

11,,1,
ˆ;

ˆ2

1
ˆ,ˆˆPrˆ,ˆ

2

2

USLxLSLdye
x

xxUSLxLSLxxP
x

x

p

USL

LSL

x

xy

p

ppconf 


 












 

 
92,687% 

 
41,964% 

Bivariate conformance 

probabilities (assuming 
zero covariance) 

     xxPxxP pconfpconf
ˆ,ˆˆ,ˆ ,,2,,,1,      

38,895% 

Validation,  

Bivariate conformance 
probabilities Pc 

(NEW04 D3.1.5) 

Joint probability distributions: Normal 38,7421% 

 

  

Accounting for the 0,959 coefficient of correlation (eq. 3.13) known from the PC analysis yielded 

instead a conformance probability (Normal distribution) of Pconform = 41,9501%, illustrating the 

importance of accounting for correlation in such calculations.  
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5.2 Global PC Region 

The new PC specification limits apply to the modified data set PXX ' where, again, conformance 

probabilities can be calculated for typical (mean) values 
































)19(097,0

)135(367,0

165,0

342,0

759,0651,0

651,0759,0
' XpX

T
. 

Assuming no measurement uncertainty in the pair of explanatory variables X’:  

Table 5.2 Summary of calculated bivariate PC conformance probabilities in the healthcare study: global 
conformity 

Global conformity assessment - PCA 

 ,p  
σp calculated from diagonal elements of Cov(X’) 

Mean 

PC1 

Mean 

PC2 

0,367(135) -0,097(19) 

USLpUSL  T

pc
 0,510 0,011 

LSLpLSL  T

pc
 0,141 -0,173 

Univariate conformance 
probabilities      

 
 

11

ˆ2

)ˆ(

11,,1,
ˆ;

ˆ2

1
ˆ,ˆˆPrˆ,ˆ

2

2

USLxLSLdye
x

xxUSLxLSLxxP
x

x

p

USL

LSL

x

xy

p

ppconf 


 












 

 
80,720% 

 
99,996% 

Bivariate conformance 

probabilities (assuming 
zero covariance) 

     xxPxxP pconfpconf
ˆ,ˆˆ,ˆ ,,2,,,1,      

80,716% 

Validation,  

Bivariate conformance 
probabilities Pc 

(NEW04 D3.1.5) 

Joint probability distributions: Normal 81,068% 

 

 

These bivariate probabilities of global conformance for the mean are much higher in the PC analysis 

than in the corresponding observation matrix (X) analysis [§5.1], reflecting that the PC mean is more 

squarely centred on the specification region, as evident in a comparison of Figures 3.1 and 4.1. 

6 Adding measurement uncertainty to calculation of conformance 

probabilities for bivariate cases: healthcare studies 
Traditional multivariate analysis has neglected measurement uncertainty. An account of how 

uncertainty can be included is given in Annex B.  
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6.1 X conformance probabilities in the healthcare study: global conformity, 
including measurement uncertainty 
Assuming no correlation in the pair of explanatory variables X in the present healthcare case study:  

Table 6.1 Summary of calculated X conformance probabilities in the healthcare study: global conformity, 
including measurement uncertainty but excluding correlations 

Global conformity assessment 

  mp uxx ;ˆ,ˆ   

σp calculated from diagonal elements of Cov(X) 

um, (B.3) 

Mean 

0minBSFB  
Mean 

0minBSFBA  

0,342(103;30) 0,165(89;57) 

Reliability coefficient, (B.1) 0,92 0,71 

USL 0,5 0,2 

LSL 0,1 0,1 

 
  mp ux 22
ˆ    0,108 0,106 

Univariate conformance 
probabilities 

      mpLmpUconf uxxRuxxRP ,ˆ,ˆ,ˆ,ˆ1%100 ,,,,   

      
dxydee

u
uxxR

z

z

pm
USL

LSL

xx

p

u

xy

m

mpU 





  
















1

1

2

2

2

2

2

)ˆ(

2

)(

,,
2

1

2

1
,ˆ,ˆ 




 

 
91,643% 

 
35,939% 

Bivariate conformance 

probabilities (assuming 
zero covariance) 

     mpconfmpconf uxxPuxxP ;ˆ,ˆ;ˆ,ˆ ,,2,,,1,      

32,935% 

Univariate conformance 

probabilities – Alt.   
 

 
dye

u
uxxR

z

z

mp
USL

LSL

u

xy

mp

mpAU 


 







22

2

2

)ˆ(

22
,,,

2

1
,ˆ,ˆ




  

91,642% 35,939% 

Validation,  

Bivariate conformance 

probabilities Pc 

(NEW04 D3.1.5) 

Joint probability distributions: Normal 33,523% 

 

 

A value of Rβ of 0,9 given in Table 6.1 means that about 75% of the observed variation is explained by 

product variations rather than limited measurement quality - which is considered acceptable [Linacre 

2002]
6
. Such limits, while enjoying widespread use, can appear to be somewhat arbitrary. Ultimately 

when appropriate (or fit-for-purpose) levels of uncertainty and associated risks of incorrect decisions 

                                                      
6
 J M Linacre 2002, “Optimizing Rating Scale Category Effectiveness”, J. Appl. Measurem., 3, 85 - 

106 
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are to be set, reference will need to be made to measures of impact for various stakeholder groups 

[Pendrill 2014a]. 

6.2 Allowing for correlation when including measurement uncertainty in 
conformance probability calculations 
In looking for approaches to making in the best way a full account of limited measurement quality, 

including even correlation, in multivariate conformity assessment and decision-making, as elsewhere 

in the present work we can find useful analogies in the reasonably established treatment of 

multivariate entity dispersion. 

Correlation in measurement – for example, arising from the use of a common instrument or 

measurement standard in different sets of measurements – could be dealt with in the multivariate 

context by employing a principal component analysis which would rotate the measurement dimension 

axes to new coordinates characterising the main variables of measurement dispersion. Note of course 

that this measurement PCA is conceptually distinct from the classical product PCA described in 

§A2.3, although of course the mathematics is similar. 

7 Multivariate regression 
The final part of present healthcare studies provide illustrative cases of the treatment of multivariable 

and qualitative observations where the way a product or material feels when touched is an important 

property for consumers. 

A regression [Annex C] is to be made in order to find multivariate relations between the sensory 

response variables (Z) and various combinations of explanatory physiochemical variables (X) – an 

essential step which enables a product to be tailor-made by a manufacturer to suit consumer 

preferences, as expressed in terms of the PCR estimator,  XZpZ fT  ' . 

The PC analysis performed above permits reduction of correlations amongst observed quantities X by 

identifying a set of orthogonal principal components (P), which in turn simplifies subsequent analyses, 

such as already demonstrated above for conformity assessment against explanatory variable X 

specification limits.  This correlation freedom also enables a multivariate regression of the explanatory 

variables against response variables Z, as follows. 

7.1 Dealing with qualitative responses 
Since some measurements are qualitative – such as the perceived ‘slipperiness’ of a skin cream in the 

current healthcare study – and require analysis on an ordinal scale. To this end, we first introduce 

psychometric (Rasch) and generalised linear modelling
7
 [Annex D] which to our knowledge have only 

recently entered
8
 into the sensory community but which we consider an obligatory preliminary to any 

multivariate analysis of sensory data, traditionally performed with so-called quantitative descriptive 

                                                      
7
 L R Pendrill 2014b, “El ser humano como instrument de medida”/”Man as a Measurement Instrument”, e-

medida and NCSLI Measure J. Meas. Sci., 9,  24 - 35 (Dec 2014) 
8
 F Marangon, L Pagani, G P Zaccomer, and S Troiano 2010, ”Some uses of Rasch Model Parameters in Sensory 

Analysis: The example of Wine judging”, Palerma 2010, 

http://www.academia.edu/8821621/Some_Uses_of_Rasch_Model_Parameters_in_Sensory_Analysis._The_Exa

mple_of_Wine_Judging 

http://www.academia.edu/8821621/Some_Uses_of_Rasch_Model_Parameters_in_Sensory_Analysis._The_Example_of_Wine_Judging
http://www.academia.edu/8821621/Some_Uses_of_Rasch_Model_Parameters_in_Sensory_Analysis._The_Example_of_Wine_Judging
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analysis (QDA) and other techniques
9
. Only when the raw data – e.g the sensory data Z – have been 

transformed to a quantitative scale, using the Rasch approach, can many of the ‘traditional’ tools of 

statistics and metrology then be applied without more ado
10

. This includes expressions of 

measurement reliability; measurement uncertainty and metrological traceability; precision and 

trueness; construct alleys; measurement/product separation; significance tests within and between 

raters, products, items, etc; spider plots; multivariate principal component analysis; etc. 

Conceptually, this treatment of uncertainty in qualitative observations is intimately connected with 

decision risks [Pendrill 2014b].  

7.2 Results of PCR for healthcare studies 
In Figures 7.1 are shown for comparison typical results of principal component regressions (PCR) for 

(a) traditional test theory and (b) Rasch analysis [Annex D], providing explicit relations between 

sensory (‘Slipperiness’) and explanatory variables. 

      

Figures 7.1 Relations in the healthcare study between sensory response (Slipperiness) (a) conventional test 
theory, (b) Rasch item parameters ϴ) for the 6 samples, measured (y-axis) and predicted (x-axis) from 

explanatory variables (ForceBoard, BIOSKIN) given in eq. (7.1) and (7.2), respectively from PCR analyses 

 

It is evident from Figure 7.1 that the Rasch analysis of the sensory data yields lower measurement 

uncertainties than conventional test theory, thanks to Rasch analysis’ ability to treat ordinal data 

properly as well as to provide separate estimates of item (sample cream) and person (sensory panellist) 

attribute values. 

Table 7.1 Summary of relations in the healthcare study between sensory response Z (a) conventional test theory, 
(b) Rasch item parameters ϴ) for the 6 samples and explanatory variables from PCR analyses 

 Slipperiness(direct), ForceBoard, BIOSKIN: USL LSL 

(a) 

conventional 

test theory 

ii ,FBA364,11,FB410,16521,13ssSlipperinez 0minBS0minBSii    

 

(7.1) 

10 3 

 RMSEfit = 0,75 

                                                      
9
 J M Murray, C M Dekahunty, and I A Baxter 2001, ”Descriptive sensory analysis: past, present and future”, 

Food Research International, 34, 461 - 71 
10

 E Svensson 2001, “Guidelines to statistical evaluation of data from rating scales and questionnaires”, J Rehab 

Med; 33: 47–48 
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(b) Rasch 

item 

parameters 

ϴ) 

ii ABS_FB0min064,14BS_FB0min455,10896,5ssRSlipperineyR ii    

(7.2) 

-3,4 2,1 

 

 

 

 RMSEfit = 0,63 

 

The corresponding ‘goodness of fit’ (RMSEfit in Table 7.1) can be measured as the square root of the 

group variance,   
i

iz
2

iScore
N-M

1
, for each fit may be calculated from the regression 

residuals, iScore ii zR , with a corresponding number of degrees of freedom equal to M - N, for 

the M specimens amongst N fitted parameters. In order to compare the relative merits of the various 

fits, compensation is made for the different scales of the conventional test theory and Rasch item 

parameters in calculating the group variances quoted in Table 7.1. The scaling factor is obtained from 

the slope of an approximate linear fit between the conventional test theory and Rasch sensory scores 

[Ringstad et al. 2015]. 

 

The sensory specification limits, USL and LSL, on the response variable Z, perceived slipperiness in 

the present healthcare study, given in Table 3.X correspond to specification limits on the pair of 

explanatory variables X [physical material properties
0minVSFB (friction) and

0minVSFBA (adhesion) and 

measured with the ForceBoard set-up on artificial skin substrates BioSkin]. 

Table 7.2 Summary of calculated univariate sensory data Z conformance probabilities in the healthcare study: 
specific conformity, including measurement uncertainty, (a) conventional test theory, (b) Rasch item parameters 

ϴ) for 2 samples (B & F) and explanatory variables from PCR analyses 

Specific conformity assessment 

Slipperiness,  mux,ˆ  

Sample B 

(a) 

Sample B 

(b) 

Sample F 

(a) 

Sample F 

(b) 

0,9(7) 5,4(2,2) 4,65(37) -0,08(15) 

USL 10 -3,4 10 -3,4 

LSL 3 2,1 3 2,1 

Univariate 

conformance 
probabilities 

    11

2

)ˆ(

11,,1,
ˆ;

2

1
,ˆPr,ˆ

2

2

USLxLSLdxe
u

uxUSLxLSLuxP
x

x

m

USL

LSL

u

xx

m

mmconf 


 








  

0% 

 

0% 

 

100% 

 

100% 

 

8 Conclusions 
Illustrations of best-practice in making multivariate conformity assessment and decision-making have 

been given in case studies of healthcare products, particularly a bivariate case of topical formulations 

(skin creams) where the final result was expressions for the relation between various consumer-related 

quantities, Z, such as slipperiness and smoothness, when each cream is applied on human skin, and a 

number of physiochemical properties, X, measured when the same creams are applied on artificial skin 

substrates. 

This final result was achieved with a series of mathematical and statistical approaches to uncertainty 

evaluation. Procedures for setting multivariate tolerance and specification regions and for calculating 

multivariate conformance properties are reviewed and applied. This includes validation of new 
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software for bivariate conformance probability calculations developed in earlier parts of this NEW04 

project. Principal component regression, consisting of an initial principal component analysis (PCA), 

tackling correlation amongst the explanatory variables (X), enabled both conformity assessment 

against explanatory variable X specification limits and multivariate regression including Z. A second 

challenge is that some measurements will be qualitative – such as the perceived ‘slipperiness’ in a 

current healthcare study – and require analysis on an ordinal scale, where many of the traditional tools 

of statistical analysis cannot be applied. Methods for treatment of measurement uncertainty, reliability 

and decision risks in multivariate conformity assessment are developed, often drawing analogies with 

the treatment of corresponding product dispersion in traditional multivariate statistical process control. 
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Annex A Conformance probabilities for multivariate cases 

A.1 Multivariate analysis 
 

Table A.1 NEW04 Deliverables for multivariate cases 

Deliverable 
number 

Deliverable description  Lead 
Participant 

Other 
Participants 

Deliverable 
type 

Delivery 
date 

3.1.2 Report on conformity assessment for 
multivariate cases and conformity 
assessment involving cost function 

SP JV, LGC, LNE, 
PTB, NPL, SCA 

Report July 2013 

3.1.5 Software for conformity assessment 
in multivariate cases developed 

LNE  SP, LGC Software  Jul 2014 

3.2.3 Intermediate report on case study on 
health care products  

SP LGC, SCA  Report Jul 2014 

3.2.4 Case study on health care products 
completed and an article submitted 
to a trade journal 

SP LGC, SCA  Report,  

Article 

Mar 2015 

 

In a metrological study of conformity assessment in a multivariate situation, the clear resolution of the 

multivariability into components associated with production and measurement errors presents a 

challenge (at least as significant as in the univariate case [D3.1.1; Pendrill et al. 2013]). In traditional 

pragmatic approaches to multivariate analysis, measurement uncertainty is assumed to be negligibly 

small. As we look in the present healthcare studies to include explicitly measurement uncertainty in 

multivariate cases, useful analogies can be drawn with the reasonably established treatment of 

multivariate entity dispersion, as will be described below.  

In the wealth of literature describing the area, multivariate analysis, in fields such as chemometrics 

[Olivieri et al. 2006
11

], has been described as the “efficient extraction of selective information from 

unselective data”.  

A.2 Multivariate conformity assessment 
A specification region is bounded by (multivariate) specification limits set e.g. with reference to 

product specifications based on end-user requirements as well as technical limitations of manufacture. 

Estimates are then made of the fraction conforming and/or non-conforming product for the actual 

production (or process) dispersion compared with a specification region. In the first instance, the 

observed dispersion is dominated by actual variability in product and traditionally measurement 

dispersion has in most cases been assumed to be negligibly small. 

                                                      
11

 A C Olivieri, N M Faber, J Ferré, R Boqué, J H Kalivas and H Mark 2006, “Uncertainty estimation and 

figures of merit for multivariate calibration”, Pure Appl. Chem., 78, 633 – 61 
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A.2.1 Specification region and conformance probabilities for observations X 

An overall specification region for the observation matrix X in the multivariate case can be described 

for example as a ‘hyperrectangle’:  XXXS USLxLSLx  where lower respectively upper 

specification limits are set for X as follows in terms of the univariate specification limits:
 

 
q

T

X LSLLSL ,...,1LSL ;
  

 q

T

X USLUSL ,...,1USL
 

There remains in the international literature a number of different approaches to defining this 

multivariate specification region, as will be discussed below. 

An overall multivariate specification region has been proposed by Subaric-Leitis [2010]
12

 as the 

intersection of the specification regions  XXXS USLxLSLx  for the individual multiple 

variables (assumed independent) of the observation matrix X: 

 
q

i

iXiXiX
1

,,



 USLXLSL

    

(A.1) 

The collective probability that all of the object variables lie in conformance within their multivariate 

tolerance region can be calculated with [Subaric-Leitis 2010]: 

 

   dX... dXX...Xg ... 

X ... X

qq

qXqqXXX

qX

qX

X

X

11

,,1,11,

,

,

1,

1,

,,

Pr





USL

LSL

USL

LSL

USLLSLUSLLSL

  

(A.2) 

When the different components are independent: 

  i

q

i

iiiconform dXuXXg
iX

iX

 



1

,

,

,,Pr

USL

LSL
    

(A.3) 

A multivariate process capability index wrt to the observations matrix X could in the case of 

indepenedent components be calculated in terms of the individual univariate indices: 

iX

iXiX

iX

LSLUSL
C

,

,,

,
6 


      (A.4) 

where iX , is the process standard deviation for the i
th
 variable of X, as given by the (square root of) 

the diagonal elements of the covariance matrix of the observations: 

                                                      
12

 A Subaric-Leitis 2010, “Risikoanalyse multivariater Konformitätsprüfungen”. tm - Technisches Messen: 77, 

pp. 662-670, http://dx.doi.org/10.1524/teme.2010.0091 

http://dx.doi.org/10.1524/teme.2010.0091


 150330   

 

 

 

21 

 

A report of the EMRP joint research project 

NEW04 “Novel mathematical and statistical approaches to uncertainty evaluation” 

 

  

  

  

 

 























 







...

...

...
1,1

2

2121,2

212,1

2

1 qqr

r

r 





XCov  

A corresponding dimensionless correlation matrix is often used:  













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



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
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...
1

,1

2,1

2,1 qr

r

r

XCor , 

involving only the correlation coefficients, ri,j, and is obtained by dividing each element of Cov[X] by 

the product ji   of standard deviations of variability of pairs (i,j) of components. 

In general, there will be some degree of correlation amongst the various observation variables, that is, 

the off-diagonal elements of Cov(X)  are not zero. This complicates evaluation of conformance 

probabilities and process capabilities with equations (A.2) and (A.4), respectively. 

A.2.2 Tolerance region providing a minimum coverage in manufacture 
For completeness, mention is also made of multivariate tolerance regions.  

 

Figure A.1 - Geometry of tolerance and process regions [Abu Zahid & Sultana 2008]
13

 

 

                                                      
13

 Md. Abu Zahid and A Sultana 2008, “Assessment and comparison of multivariate process capability indices in 

ceramic industry”, Journal of Mechanical Engineering, ME39, 18 - 25 
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Instead of defining a specification region in terms of consumer-based specifications, a tolerance region 

(illustrated in Figure A.1) can be introduced by a manufacturer to provide a certain minimum coverage 

in production
14

. For instance, a
 

%100

%1100

P

 
Normal tolerance region, gives, with  %1100 

confidence, a region where at least %100 P of the population of entities (products) will be enclosed. 

Law [1996]
15

 describes setting a limit on the error in estimates of conformance probabilities by 

adjusting the multivariate tolerance region to limit the fraction, α, non-conforming items (which is 

equal to the area under the tail of the χ
2
-distribution, with υ degrees of freedom): 

      2

,

1 ˆˆ
 

XXXXX Cov
T

   (A.5) 

The ellipsoid defined by (A.5) will include  %1100  of the volume of the distribution.  

It is important to make a clear distinction between the dispersion in entity (P) values from 

measurement dispersion (M) merely reflecting limited measurement quality [Annex B] – it is not 

immediately apparent from Figure A.1 how much of the observed dispersion is an artefact of limited 

measurement quality.  

A.2.3 Specification region in Principal Component Analysis (PCA) 

A main tool to handle multivariate situations – particularly in our case, decision-making and 

conformity assessment – is principal component analysis (PCA) on the observed data matrix for the 

explanatory variables (X) which “is a mathematical method of reorganising information in a data set of 

samples… to discover new variables ‘Principal Components’ (PCs), which account for the majority of 

the variability in the data. This enables us to describe the information with considerably fewer 

variables that was originally present.” [Davies and Fearn 2004]. If there are many PCs identified, some 

selection may be made of those with the most loading.  

For this PCA, a linear model is assumed with model errors xε : 

xεPTX       (A.6) 

and the data matrix (X) is first centred. The PCs are the eigenvectors of the covariance matrix of X, 

that is, the vectors p1, p2, ..., pk satisfying the equations 

nn ppCov(X)  n     (A.7) 

where λn is the n
th
 eigenvalue of  XCov .  

                                                      
14

 D S Young 2010 ”tolerance: An R Package for Estimating Tolerance Intervals”, J. Stat. Software, 36, 1 - 39 
15

 M J Law 1996, Multivariate Statistical Analysis of Assembly Tolerance Specifications, M.Sc.Thesis 

Department of Mechanical Engineering, BrighamYoung University 



 150330   

 

 

 

23 

 

A report of the EMRP joint research project 

NEW04 “Novel mathematical and statistical approaches to uncertainty evaluation” 

 

  

  

  

 

The variables P and T, defined by the relations (A.6) and (A.7), are referred to as loadings and scores, 

respectively.  

PCA analysis permits reduction of correlations amongst observed quantities by identifying a set of 

orthogonal principal components. The freedom from correlation simplifies subsequent analyses, such 

as in the present healthcare studies when making (i) conformity assessment against explanatory 

variable X specification limits [§3] and (ii) multivariate regression of the explanatory variables against 

response variables Z [§7]. 

A.2.4 PC Specification Region: Approach of Wang and Chen [1998] 

Engineering specifications for the PCis and their target values in multivariate process control have 

been proposed in the approach of Wang and Chen [1998]
16

 as: 

LSLpLSL
T

iPCi
 ; USLpUSL

T

iPCi
 ; TpT

T

iPCi


 
(A.8) 

The corresponding multivariate PC specification region in this approach is: 

 PCiPCiPC yyS USLLSLX  '1
 

In this context, a multivariate process capability index has been proposed by Wang and Chen [1998] 

as simply the product of the individual univariate principal components (PC) indices: 

kk

i

PCpp i
CMC

1

1

; 







 

      

(A.9)
 

where 

i

ii

i

PC

PCPC

PCp

LSLUSL
C






6
;

is the univariate (principal component, PCi) process capability index and 

where the first k PCs capture 90% of process variability.  

  

                                                      
16

 Wang FK and Chen JC 1998 ”Capability index using principal component analysis”, Quality Engineering 11: 

21 - 7 
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Annex B Including measurement uncertainty in bivariate conformance 

probabilities 
Traditional multivariate analysis has to date mainly assumed that measurement uncertainty is 

negligibly small compared with actual entity dispersion. Among the JCGM Guides to the expression 

of uncertainty in measurement, the following are particularly relevant to the multivariate case: (i) the 

GUM [2008] itself; (ii) GUM-S2 [2011]: Extension to any number of output quantities; and (iii) 

GUM-S3 [to appear]: Developing and using measurement models. The current JCGM 106 document 

on conformity assessment addresses only the problem of univariate case. 

B.1 Metrological (multivariate) coverage 
A multivariate measurement model is one in which there is any number of output quantities [JCGM 

102:2012 §3.8] 

NOTE  A matrix representation of the general form of multivariate measurement model is 0X)h(Y,  .

 TmYY ,...,1Y is a vector of m output quantities, m in number, in the multivariate measurement model, 

which constitutes the measurand, the quantity values of which are to be inferred from information about input 

quantities  TNXX ,...,1X in the multivariate measurement model.  Tmhh ,...,1h and Y are 

matrices of dimension m x 1. 

 

In metrology, a coverage region RY is specified as an m-dimensional space that contains Y with given 

coverage probability p, given an estimate y of the output quantity  TmYY ,...,1Y  and its associated 

covariance matrix Uy. In general, once the PDF for Y is established, for a region RY, either the 

coverage probability for a specified coverage region or a coverage region for a specified coverage 

probability can be determined. Doing so is straightforward for a Gaussian PDF [see JCGM 102:2012 

§§6.5.2, 6.5.3 and 6.5.4]. For other PDFs, a numerical method such as the Monte Carlo can be 

employed [adapted from JCGM 102:2012 §§6.5.1.2 and 6.5.1.4]. 

Particular coverage regions are [GUM-S2 §6.5]: 

a) hyper-ellipsoidal coverage region centred at y, and 

b) hyper-rectangular coverage region centred at y  

An example of a coverage region for a vector output quantity is the 100p% hyper-ellipsoidal coverage 

region: 

    21

p

T
k 

yηUyη y     (B.1) 

where y specifies its location; Uy specifies its shape; kp specifies the size of the region; and 

 TM ,...,, 21η  is a variable describing possible values of the quantity Y [adapted from JCGM 

102:2012 §7.7.2]. 

A metrological multivariate coverage region is analogous to (but conceptually distinct from) the 

production multivariate tolerance regions (A.10) discussed in Annex A. 
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B.3 Calculating multivariate conformance probabilities including measurement 
uncertainty 

B.3.1 Reliability 

Because of limited measurement quality, a measured item attribute value β can differ from the ’true’ 

β’, with a measurement error  ,   ' .  

Measurement uncertainty in a test result – an apparent product dispersion arising from limited 

measurement quality – can be a concern in Conformity Assessment by inspection since, if not 

accounted for, uncertainty can:  

 lead to incorrect estimates of the consequences of entity error 

 increase the risk of making incorrect decisions, such as failing a conforming entity or passing 

a non-conforming entity when the test result is close to a tolerance limit. 

It is therefore good practice to set proactively a limited on how large measurement uncertainty is 

allowed to be in relation to the product dispersion to be assessed. This measurement quality limit is 

often quantified in terms of corresponding reliability coefficient calculated as:

 
 

   
 'var

var'var

'var

var







 






variance Observed

variance  True
R    (B.1) 

Practically in cases where measurement dispersion is of comparable size to actual product variation, it 

can be difficult to separate these [Rossi and Crenna 2006]. This will make evaluation of reliability 

coefficients according to (B.1) a challenge.  

B.3.2 Combining production and measurement dispersions 

Quoting Rossi and Crenna [2006]: “It is interesting to note that the (consumer) risk… depends both 

upon the quality of the measurement process, Μ, expressed by the characteristic function  xxP ˆ
 , and 

the characteristics of the process Ƥ, summarised by the probability distribution  xP ˆ
 . These two 

characteristics combine in the following way:      xPxxPxxP ˆˆˆ,,    since… the conditional 

probability  xxP ˆ


 does not depend on the (production) probability distribution of x, because it has 

been obtained solely on the basis of the characteristic of the measurement process, whilst the 

probability distribution  xP ˆ
  obviously does not depend upon the measurement system we choose.” 

Pendrill [2007]
17

 gives examples in the univariate case of nesting of product and measurement 

integrals to treat conformance probabilities in conformity assessment without neglecting measurement 

uncertainty. For example, the ‘consumer’ risk in global conformity assessment, i.e. where the mean 

value appears to lie within the region of permissible values, RPV, but dispersions lead to finite 

                                                      
17

 L R Pendrill 2007, “Optimised Measurement Uncertainty and Decision-Making in Conformity Assessment“, 

NCSLi Measure, Vol. 2 No. 2 • June 2007, pp. 76 – 86 

http://metrology.files.wordpress.com/2010/12/pendrill-ncsli-measure-june-2007-optimised-uncertainty-review-paper.pdf
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probabilities of the entity being out of tolerance, can be calculated with respect to both upper and 

lower specification limits: 

          
 

 
USLx USLx

mpmpU xddxxgxxguxxUSLxuxxR
ˆ

,,,,
ˆˆˆ,ˆ,ˆˆPr,ˆ,ˆ   

          
 

 
LSLx LSLx

mpmpL xddxxgxxguxxLSLxuxxR
ˆ

,,,,
ˆˆˆ,ˆ,ˆˆPr,ˆ,ˆ   

Postulating plausible Normal distributions for the measurement process  2,ˆ muxN
and of the 

production process  2,ˆ pxN 
of the entity of interest, for example the consumer risk wrt to the upper 

specification limit can be evaluated as:  

   dxdyee
u

uxxR p

z

m

xx

pUSL

u

xy

m

mpU 





  
















2

2

2

2

2

)ˆ(

2

)(

,,
2

1

2

1
,ˆ,ˆ




  (B.2) 

where we assume that the production and process means coincide [Figure A.1]. 

Note again the need to keep a clear distinction between production and measurement contributions: 

actual dispersion in product indicates a certain rate of non-conforming items while the apparent 

dispersion due to limited measurement quality leads to a risk of incorrect acceptance of non-

conforming product. 

Corresponding expressions for conformance probabilities including both entity and measurement 

dispersions can then be simply derived for the consumer risk case PVRxˆ as: 

      mpLmpUconf uxxRuxxRP ,ˆ,ˆ,ˆ,ˆ1%100 ,,,,     

An alternative expression for the conformance probabilities including measurement uncertainty is: 

  
 

 
dye

u
uxxR

z

z

mp
USL

LSL

u

xy

mp

mpAU 


 







22

2

2

)ˆ(

22
,,,

2

1
,ˆ,ˆ




  

In both expressions, measurement uncertainty in each of these calculations of global assessment was 

estimated by taking an average of the individual specific assessment uncertainties for the M (=6) 

samples: 

M

u

u i

im

m




,
2

     (B.3) 
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Annex C Multivariate regression 
In a multivariate regression, the observed vector of outcomes (i.e., response variables Z) is regressed 

on the selected principal components (PCs) from the PC analysis as covariates (i.e. explanatory 

variables, P), using ordinary least squares regression (linear regression) to get a vector of estimated 

regression coefficients (with dimension equal to the number of selected principal components), that is 

in the form  PZ f' . 

For the basic linear model with errors, modelled as zεCTZ  accounting for dispersion in Z, an 

(unweighted) least-squares regression estimate of a design matrix is  

  ZTTTC
T1T




000
ˆ      (C.1) 

for a ‘calibration’ data set T0, so that a predicted response is CTZ 00
ˆˆ  . Here the principal 

component scores are TpT
T

iPCi
 [eq. (A.8)]. This is done in MathCad using the function 

when fitting a polynomial of order n (=1 in the present study). 

Finally, this vector 'Z  is transformed back to the scale of the actual covariates, using the selected 

PCA loadings (the eigenvectors P corresponding to the selected principal components) to get the final 

PCR estimator (with dimension equal to the total number of covariates),  XZpZ fT  '  for 

estimating the regression coefficients characterizing the original model. 

Annex D Rasch invariant theory and logistic regression 
Ordinal data can be treated in terms of the probability, P, of successful decisions of classification of 

observed values into a number of discrete categories, k = 1,…, K of item properties when probed by a 

number of persons (or other probes), i =1,…,NTP:  

 
z

z

e

e
zP




1
   (D.1) 

The binomial Rasch variant of (D.1) is where the ‘latent’ variable is expressed as the difference 

kikiz  , , between pairs of attributes, θ and β, which can be assigned to any pair of components 

interacting, such (person, probe,…) and (material, task,…), respectively, of the system subject to 

assessment. This formulation is one of a family of so-called generalised linear models which provide 

links between the response (Z) and explanatory stimulus (X) variables covering not only explicitly 

non-linear responses but also poorly known responses to the explanatory variables. The approach is 

particularly advantageous when treating ordinal data in that it provides a linear, quantitative function 

of the difference in attributes: 
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ki

kiP

P
 









 ,1
log  as well as a clear separation of person and item scatter

18
. 

Measurement uncertainty, which is needed to make statements about apparent differences between 

values, such as the relative probabilities or quality scores of the successful sorting amongst different 

categories, can be dealt with in Rasch modelling as follows.  

For dichotomous observations by person i of item k, the scored response  








 
ki

PPP kikiki ,
1,,,    (D.2) 

where Pi,k is the probability of success, Psuccess, given in Eq. (D.1). The binomial error distributions for 

dichotomous scores approximate Gaussian distributions when accumulated across all the observations, 

as they are in the estimation process
19

. 

A gauge of measurement uncertainty in the estimated Rasch attribute values θ and β is expressed as a 

standard error,

 






 



ji
PP

SE

ji

ji

,
ˆ1ˆ

1
,

,



, derived from the Fisher information in the context of 

maximum likelihood estimation, for instance for a particular item j, 

   

 
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







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k
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jalljall

vqk
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1

,
2

1
,,

2

;;

1
realSE  . 

Better resolution and reliability in attribute results are achieved with a Rasch analysis compared with 

classical test theory, not affected by the abilities or attitudes of the particular persons measured, or by 

the difficulties or qualities of the particular sensory test items used to measure. 

    

                                                      
18

 L R Pendrill 2014b, “El ser humano como instrument de medida”/”Man as a Measurement 

Instrument”, e-medida and NCSLi Measure, (in press Dec 2014) 
19

 J. Linacre, “Rasch Model with an Error Term,” Rasch Measurement Transactions, vol. 23, no. 4, p. 1238, 

2010 


