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1 Decision-making and conformity assessment 

1.1 Introduction 
Decisions based on measurement, such as tests of the significance of differences and of conformity, 

are currently made in many important application areas without a clear and harmonised basis for 

assessing impact and sharing the risks that arise from measurement uncertainty. The need is 

increasingly appreciated on all sides for improved insight into setting a ‘fit-for-purpose’ level of 

measurement effort prior to performing a given task; and better mutual understanding between the 

metrologist and those ordering measurement tasks about the import and limitations of the 

measurements when making decisions of conformance after a measurement.  

The present document is intended as a Guide to the state-of-the art of Uncertainty Evaluation in 

Decision Making and Conformity Assessment, and accompanies the other Guides – to Bayesian 

Inference for Regression Problems [4] and to Uncertainty Evaluation for Computationally Expensive 

Models [5]  – as part of the EMRP NEW04 project (2012 – 5) ”Novel mathematical and statistical 

approaches to uncertainty evaluation” which belongs to the European Metrology Research Programme 

(EMRP, FP7 Art. 185), jointly funded by the EMRP participating countries within EURAMET [6] and 

the European Union.  

Generic guidance including some original material presented in the present document - intended for 

industrial, academic & societal end users as well as national metrology institutes - addresses the role 

of measurement uncertainty in decision-making and conformity assessment for multivariate cases, 

regression and computationally expensive models illustrated for a number of case studies such as fire 

engineering, healthcare and electricity energy metering.   
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2 Appraisal of existing guides 

2.1 General role of measurement uncertainty in decision-making 

and conformity assessment 
 

“No single method used to integrate uncertainty of measurement into decision making process. Decision rules 

differ between products, fields of measurement, profession and countries” [7] 

 

Measurement uncertainty in a test result on inspection of an entity (measurement object) can: 

 lead to incorrect estimates of consequences of entity error – e.g. in the flow of a liquid 

monitored by a flowmeter (as studied in NEW04 WP1, §4, [4]) 

 aid in assessment of significance of apparent differences between repeated test results 

[Figure 2.1] 

 increase risk of making incorrect decisions, such as failing conforming entity or passing 

non-conforming entity when test result close to tolerance limit [Figure 2.2] 

Decisions of conformity are currently made in many important application areas, such as 

environmental monitoring, the health sector and product safety testing, but without a clear and 

harmonised basis for sharing the risks that arise from measurement uncertainty between the consumer 

and the supplier.  

 

Figure 2.1 Decision-making: Significant difference between repeated measurements? 
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2.1.1 Conformity assessment 
 

Not all guides are so clear about why conformity assessment is 

important. 

 

“Conformity assessment involves a set of processes that show your product, service or system meets 

the requirements of a standard [8]: 

 provides confidence for consumer that requirements on products and services are met 

 provides the producer and supplier with useful tools to ensure product quality 

 often essential for reasons of public interest, public health, safety & order, protection of 

environment and consumer and of fair trading.” 

Major recent guides concerning the role of measurement uncertainty in Conformity Assessment, 

which is the main subject of the current work, give different emphasis about the motivation for 

considering Conformity Assessment: 

 In the introduction to the ISO standard 10576-1 [9], reference is made to “supplier’s 

declaration,… third party certification,…, health-related characteristics…”. 

 The French standard FD x07-022 [7] states in its Foreword: “We are continually faced with 

situations in which we have to take decisions or make choices…: is the product… 

‘conforming’?”. That standard usefully provides a number of diverse examples of Conformity 

Assessment in its Table 1, including of a batch of products using a sampling plan; type 

acceptance; comparison of a given characteristic of two products; validation that a given 

method is suited to a given need, etc. 

 The Scope of the EURACHEM guide [10] is described as “applicable to decisions on 

compliance with regulatory or manufacturing limits”.  

 In the Introduction to the recent JCGM 106 guide [11] mention is made of “accreditation of 

Conformity Assessment bodies and the use of conformity in facilitating trade”. 

2.1.2 Assuring measurement quality in conformity assessment 
The role of measurement uncertainty as a measure of measurement quality in decision-making and 

conformity assessment naturally follows the essential steps of any quality assurance loop [Deming, 

ISO 9001]: 

a) Define entity and its quality characteristics to be assessed for conformity with specified requirements 

(e.g. USL – upper specification limit; LSL – lower specification limit; MPE – maximum permissible 

(entity) error). 

b) Set corresponding specifications on the measurement methods and their quality characteristics (such as 

maximum permissible uncertainty and minimum measurement capability) required by the entity 

assessment at hand 

c) Produce test results by performing measurements of the quality characteristics together with 

expressions of measurement uncertainty. 

d) Decide if test results indicate that the entity, as well as the measurements themselves, is within 

specified requirements or not. 

e) Assess risks of incorrect decisions of conformity. 

f) Final assessment of conformity of entity to specified requirements in terms of impact. 
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2.2 Separating production & measurement errors 
Since neither the production nor measurement processes are perfect, there will always be some 

dispersion in the observed product value either for repeated measurements of one item or for 

measurements of a series of items. Practically in cases where measurement dispersion is of comparable 

size to actual product variation, it can be difficult to separate these [12], [13]. This separation is 

however essential:  

 If one overestimates measurement dispersion, then actual dispersion in product values will not 

be detected and thus lead to poorer product quality. Additional costs will also be incurred if it 

is decided, on the basis of estimated poor measurement quality, to spend more on 

(unnecessarily) improving measurement resources. 

 An underestimation of measurement dispersion will lead to unnecessary adjustment of the 

production process and thus to increased production costs together with poorer product 

quality, where spurious measurement dispersion is transferred to product dispersion. 

Confidence in the measurements performed in the conformity assessment of any entity (product, 

process, system, person or body) can be considered sufficiently important that the measurements 

themselves will be subject to the steps a) to f) above [§2.1.2] as a kind of metrological conformity 

assessment ‘embedded’ in any product conformity assessment.  

2.2.1 Separating production & measurement errors - conceptually 
Some of the difficulty in separating production and measurement dispersion has to do with a lack of 

clarity in concepts, definitions and nomenclature which arises at the interface where two disciplines – 

Metrology and Conformity Assessment – meet.  

Two principally distinct, but closely related and easily confounded concepts coming from the two 

disciplines are, respectively: 

 A 'measurand' is a quantity intended to be measured  [14] [VIM] 

 A 'quality characteristic' is a quantity intended to be assessed 

Clear definitions of key Conformity Assessment concepts such as ‘entity’ and ‘quality characteristic’ 

can be found for instance in ISO 10576-1:2003 [9] and their systematic use in the metrological 

literature can reduce confusion in the field.  

The entity subject to Conformity Assessment may be a single item, a collective sample of items or 

maybe not even a physical object but a service. Irrespective of which entities are subject to Conformity 

Assessment, it is important to specify the assessment target as clearly as possible: ‘Global’ conformity 

denotes the assessment of populations of typical entities, while ‘specific’ Conformity Assessment 

refers to inspection of single items or individuals, as defined by Rossi and Crenna [13].  

2.2.2 Separating production & measurement errors - numerically 
There are several ways of ensuring that limited measurement quality does not adversely affect 

Conformity Assessment. Risks and the consequences of incorrect decision-making in Conformity 

Assessment can be minimised with the following three steps:  
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A. set limits on maximum permissible measurement uncertainties (equivalently, minimum 

measurement capability) and on maximum permissible consequence costs at the specification 

stage of any task [§2.2.3]; 

B. agree on acceptable locations of the uncertainty interval with respect to a specification limit 

[§2.3]; 

C. optimise measurement uncertainty proactively, ahead of a series of measurements, by 

designing experiments so that the sum of costs of measurement and of incorrect decisions of 

conformity is at a minimum [§5]. 

2.2.3 Measurement conformity assessment. Limits on measurement capability 
factors 
 

No harmonised limits on measurement capability [15] 

 

Corresponding specified requirements on measurement are, respectively: 

 limits on maximum permissible measurement uncertainty (or, equivalently, minimum 

measurement capability) when testing product. 

 limits on maximum permissible error in the indication of the measurement 

equipment/system intended to be used in the measurements when testing product; 

 

A first step to minimising the effects of less than perfect measurement quality on Conformity 

Assessment is simply to set a limit proactively, before starting the measurements, on how large 

measurement uncertainty is allowed to be [16]. This limit is often expressed as a maximum 

permissible uncertainty or ‘target uncertainty’, MPU = 1/Cm,min in terms of a corresponding minimum 

measurement capability. 

In a manner analogous to process control, a measurement capability index, Cm, can be defined in terms 

of estimated measurement variations as: 

m

SLSL

m
uM

LU
C






     (2.1)

 

 with standard measurement uncertainty um and typically M = 4 (corresponding to a coverage factor, 

k = 2 and 95% confidence). [Note that it is more usual in Metrology to use a coverage factor of 2, 

while in SPC the corresponding coverage factor for process capability is often 3.] 

In various sectors of Conformity Assessment, different limits on measurement capability have become 

established, with Cm,min ranging from typically 3 to 10. A common limit to ensure that measurement 

quality variations are small is 
p

m

s

u
 < 30%, as in Measurement System Analysis (MSA) in the 

automobile industry [17], for instance. Even in qualitative measurement, such as made on ordinal 

scales and using questionnaires, reference is made to minimum values of a reliability coefficient, given 

by: 
 
 

   
 





 


var

varvar

var

'var

 varianceObserved

  varianceTrue 
R where   ' for an attribute   of an entity 
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(object or item) with a value '  when the measurement error  is zero. In the literature [18], a 

recommended value of a reliability coefficient is 0.8, corresponding to a ’separation’ of G = 2, or in 

other words, a measurement uncertainty  var not larger than half the object standard deviation

 var . 

2.3 Deciding if entity is within specification 
 

No consensus about agreeing on acceptable locations of uncertainty interval with respect to 

specification limit [7] 

 

 

Figure 2.2 Conformity assessment of test result with respect to a lower specification limit, LSL 

 

The JCGM 106:2012 [11] document for instance addresses the technical problem of calculating the 

conformance probability and the probabilities of the two types of incorrect decisions – that is, supplier 

(β) and consumer (α) risks expressed in percentages, – given a probability density function (PDF) for 

the measurand, the tolerance limits and the limits of the acceptance interval. The decision matrix, P, in 

this simplest, dichotomous case is: 



















1

1
P      (2.2) 

where the diagonal elements give the probabilities of making the correct decisions and the off-

diagonal elements, the risks of incorrect decisions, as illustrated in the decision table shown in Figure 

2.3. 
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Figure 2.3 Decision table 

 

In the simplest case where the prior state of an entity (the measurement object) being observed is 

known to be in a particular category M, 









Mk

Mk
pk

;0

;1
, for the stimulus variable, then the 

probability, qc, of classifying the response (R) of the measurement system in a category c, is given by 

the accumulation of probabilities [19] , 

 success

k

kckc PPpq 


1
2

1

, .       (2.3) 

Equation (2.3) links the response variable (probability of successful categorization, Psuccess, in the 

decision-making) to the risks, α, of incorrect decisions arising from uncertainty in measurement of the 

explanatory variable.  

These decision risks can be modelled for two kinds of human-based perception, identification (figure 

2.2) and choice (figure 2.1) as dealt with in psychophysics [20],[21]. Identification involves in the 

dichotomous case a yes-no detection – is the stimulus within tolerance or outside a region of 

permissible values specification limit? The decision (‘consumer’) risk, α, is in this case estimated as 

the cumulative distribution function (CDF) beyond the specification limit (USL, say) on the explanatory 

variable, x, of the initial set of observations [15], 

  SLm
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u
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
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
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2

)(


  (2.4) 

This discussion can be extended to the multinominal, polytomous case, as required. 

The cumulative probability of a ‘correct’ decision can in turn be related to the change of entropy on 

information transmission [22].  This can be interpreted as the combined process of observation 

(measurement) of an explanatory variable and response (decision-making), linearized using logistic 

regression. The logistic regression link function: 
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











success

success

P

P
z

1
log      (2.5) 

can in fact be derived [23], [24], [25] in terms of the distance, z, between two stimuli along the 

explanatory variable dimension. Examples of this distance include the difference between (i) the 

intrinsic quality of a product and the leniency of a customer; (ii) the level of challenge of a certain task 

and the ability of a person to tackle the challenge; (iii) the ability of a indenter and the hardness of a 

material; (iv) the ability of a bullet to penetrate and the degree of resistance to penetration offered by a 

bullet-proof vest, to name just a few examples. This approach is applied in the multivariate case study 

of healthcare products given in §4.3. 

This generalisation connects the measurement uncertainty of qualitative observations [26] to decision 

risks and covers not only explicitly non-linear responses but also poorly known responses to the 

explanatory variable, perhaps allowing only less quantitative appraisals, such as on an ordinal or even 

a merely nominal scale. 

In an important sense, this approach to measurement uncertainty puts more emphasis on the risks of 

incorrect decisions arising from uncertainty and how these vary with the explanatory variable, in 

contrast to the traditional metrological evaluation of the measurement result (output of the 

measurement system) accompanied by an estimation (traditionally a standard deviation) of an 

‘uncertainty’ which only subsequently is used to derive decision risks. As is well-known, the logistic 

regression approach does not rely on assuming a particular probability density function but instead can 

be expressed in terms of the more general concept of information entropy, which can handle even 

expert elicitation and qualitative observations. 
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3 Conformity assessment for computationally 
expensive systems 
In a study of statistical methods addressing conformity assessment for computationally expensive 

systems, recent work has focussed on the probability of conformity that output quantities exceed a 

regulatory threshold using in particular Monte Carlo methods, as well as importance sampling and 

sequential sampling. A method to combine expensive runs with fast approximations has also been 

addressed. The strengths, limitations and applicability of each method are stressed and key papers 

cited. A case study on fire engineering employs these new methods. 

3.1 Computationally expensive systems 
When dealing with a computational code, one may be interested in propagating the uncertainties 

related to the input variables to estimate the uncertainty associated with the output variable. 

In the decision theoretical framework pertaining to conformity assessment, one is interested also in the 

position of the output variable with respect to a given threshold (regulatory threshold...). The problem 

of knowing whether a computationally expensive model exceeds a given threshold is very common for 

reliability analysis and safety-critical applications such as aerospace, nuclear power stations and civil 

engineering (models of bridges and buildings etc). The threshold can be interpreted as a lower 

specification limit defining a one-sided tolerance interval. 

The statistical methods that are usually used to deal with the propagation of uncertainties may need to 

be adapted to compute the probability of exceeding a threshold. This is particularly the case when the 

probability is small or when the code is computationally expensive. D3.1.4 reports statistical methods 

from the literature to address conformity assessment for computationally expensive systems. These 

methods were initially developed for reliability assessment based on computer experiments. In D3.1.4 

(as in the following deliverables) the probability of conformity is assessed as the probability that 

output quantities exceed a regulatory threshold. D3.1.4 focuses on Monte Carlo methods based on a 

large number of calls of, either the code or a metamodel of the code. Other methods addressed are 

importance sampling which is a variance reduction alternative to Monte Carlo sampling of the code 

and sequential sampling which builds sequentially a learning database for metamodelling by sampling 

points in the (unknown) conformity domain. A method to combine expensive runs with fast 

approximations is also addressed.  

Table 3.1 Recommendations for the choice of statistical methods to compute the probability of conformity 
[Table 2, D3.1.4] 

 direct sampling surrogate sampling 

target region sampling importance sampling metamodel, optimized learning design 

whole domain sampling Monte Carlo sampling metamodel, LHS learning design 

3.2 Fire engineering 
D3.2.5 reports probability of conformity estimates for the fire engineering case study described in 

D3.1.3 obtained with two statistical methods for conformity assessment from D3.1.4. The direct 

Monte Carlo method provides baseline results with CFAST code, obtained with a high computational 

cost. The metamodel-based importance sampling method (on CFAST code) has been implemented to 

reduce the computation time, while correcting for the metamodel approximation. Several 



 150529   

A guide to decision-making and conformity assessment 

 

 

15 

 

A report of the EMRP joint research project 

NEW04 “Novel mathematical and statistical approaches to uncertainty evaluation” 

configurations are studied to find a good compromise between the accuracy of the estimates and the 

computation time. 

D3.2.5 aims at computing the probability that the upper layer temperature exceeds the 200°C threshold 

for the fire engineering case study. Two statistical methods from deliverable D3.1.4 have been 

implemented in this report. The direct Monte Carlo method is used to provide baseline results. For 

large fires, the non-conformity probability estimate is 36,8%. The metamodel-based importance 

sampling method shows promising results for the fire engineering case study. For well-chosen 

combinations of the number of training points and simulation points, the method is able to produce an 

estimate of the target probability at a much lower cost than the direct Monte Carlo method with the 

same accuracy. This relies on an optimization of the number of calls to the code CFAST (done 

manually in this study). It is important to note that this method corrects for the metamodel 

approximation by importance sampling. The correction is a multiplicative factor whose computation 

requires predictions from a metamodel, calls to the code and smart samples from the input domain 

obtained with importance sampling. 

D3.2.6 extends the scope of D3.2.5 to assess the conformity of computationally expensive systems 

(FDS) using cheaper approximations (CFAST) based on modelling the relationship between the two 

codes (CFAST and FDS) and the behaviour of the codes viewed as black boxes evaluated at input 

points using co-kriging [see [27] and [28]]. Here the kriging-based [see [29] and [30]] results obtained 

with numerous CFAST simulations are sequentially corrected by more reliable but very costly and 

parsimonious FDS simulations sampled in the (unknown) target region. This so-called sequential co-

kriging method is applied to a 2D version of the case study (inputs: fire area Af and characteristic heat 

release rate Qdotsec) with the remaining 5 variables fixed at their mean values.  

Sequential co-kriging consists in sequentially adding points to the learning databases 1D  and 2D

(with 12 DD   for computational convenience) that will be evaluated by the two code levels, 

respectively CFAST and FDS, to decrease the relative uncertainty (coefficient of variation 

f

f

f
p

pu
pcv

ˆ

)ˆ(
)ˆ(  ) of the estimated probability of non-conformity fp̂  with associated uncertainty 

)ˆ( fpu . The procedure is repeated until a targeted relative uncertainty is reached (cv.seuil). 

Sequentially adding points to a learning database (also called sequential planning) according to a space 

filling design brings a global reduction of uncertainty [31]. However this approach is not necessarily 

pertaining to the problem of determining the failure area and its probability accurately. Indeed when 

the target area has a low probability, points have a very low probability to fall in. This is particularly 

critical in high dimensional problems. Specific sequential methods targeting the failure area are 

required. Such methods have already been developed to estimate a probability of failure based on a 

kriging model of a computer code [32],[33]. (Since the posterior predictive distribution of FDS outputs 

denoted ̂,(.)~
2 yy  given observations y and estimated parameters ̂  is a Gaussian process such 

methods can be applied to ̂,(.)~
2 yy . 
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The sequential co-kriging procedure returns an estimate of the probability of failure (non conformity) 

of FDS bases of a very limited number of FDS runs thanks to numerous cheap approximations 

provided a valid relationship between the two codes. A flowchart of the complete sequential co-

kriging procedure is displayed at Figure 3.1: 

 

Figure 3.1 Flowchart of the sequential co-kriging procedure 

 

3.2.1 Results of sequential co-kriging for 2D fire case study 
Preliminary remark: In this report, the additional FDS points required to carry out the sequential co-

kriging method have been replaced by the predicted mean of the current metamodel of FDS at each 

iteration. Actual additional FDS points will be displayed in the paper following this deliverable. Thus, 

the following interpretation of the results should not lead to an overvalued efficiency of the sequential 

co-kriging method.     

The initial database evaluated by CFAST comprises 9 points displayed in Figure 3.2, among them 5 

points (in red) are evaluated by FDS. Voluntarily, no FDS points exceed the threshold. The contour 

lines of the probability of excursion (function of the inputs giving the pointwise probability of 

exceeding the threshold) are also plotted.  Their dispersion represents the uncertainty on the location 

of the frontier between conformity and non-conformity given the observations and the co-kriging 

model. For instance the predicted 0.5 line indicates that there is 50% chance that the non-conformity 

domain lies above this line and the predicted 0.9 line indicates that there is 10% chance that the non-

conformity domain lies above this line. 



 150529   

A guide to decision-making and conformity assessment 

 

 

17 

 

A report of the EMRP joint research project 

NEW04 “Novel mathematical and statistical approaches to uncertainty evaluation” 

 

Figure 3.2 Initial database and initial level plot of the probability of excursion function. In green, the points 
that are only evaluated by CFAST; in red, the points that are evaluated by CFAST and FDS. 

 

A comparison of various kriging based methods has been carried out on the fire engineering case study 

to show the influence of the number of points in the database and the influence of their location on the 

estimates of the probability of conformity and its accuracy (relative uncertainty cv). Results are 

displayed in Table 3.2. 

 

Table 3.2 Summary results of the probability of non-conformity fp̂ , its associated uncertainty )ˆ( fpu  
 and its coefficient of variation (relative uncertainty )ˆ( fpcv obtained with various kriging based methods 

 

The point estimate produced by the kriging model ( 1349.0ˆ fp ) built on 100 points is very close to 

the point estimate computed with the Monte Carlo method on the same points ( 13.0ˆ fp ). However, 
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the kriging based estimate is much more accurate ( 0416.0)ˆ( fpcv  versus 25.0)ˆ( fpcv ). The 

reason is that kriging based estimates involve a lot of cheap simulations from the metamodel that 

increase the accuracy of the estimation. It is important to notice that both estimations seem to be 

biased (much lower values than the sequential co-kriging method) but that the kriging model tends to 

produce a higher value of the estimate. 

For the same number of FDS runs (5 runs) co-kriging reduces the relative uncertainty of the point 

estimate. A relative uncertainty divided by 3 ( 13.0)ˆ( fpcv  versus 3968.0)ˆ( fpcv ) was 

obtained at the cost of 4 cheap CFAST simulations. This shows the positive impact of combining 

expensive runs with cheap runs. 

Final results of the sequential co-kriging show a dramatic decrease of the relative uncertainty with 

respect to co-kriging results ( 0078.0)ˆ( fpcv  versus 13.0)ˆ( fpcv ) at a cost of only 6 smartly 

chosen new expensive runs. This relative uncertainty is also much lower than the one obtained with 

kriging based on 100 expensive runs ( 0078.0)ˆ( fpcv versus 0415.0)ˆ( fpcv ). Besides these 

results are twice as accurate as the results obtained with 100 expensive FDS simulations (

13.0)ˆ( fpcv  versus 25.0)ˆ( fpcv ). 

Results obtained at each iteration of the sequential co-kriging procedure are displayed in Table 3.3. 

The first line (iteration 0) gives the co-kriging based Monte Carlo estimates obtained with the initial 

database (9 points including 5 expensive FDS simulations) displayed at line 2 of Table 2.3. 

 

Table 3.3 Summary results of the probability of non-conformity fp̂ , its associated uncertainty  
)ˆ( fpu and its coefficient of variation (relative uncertainty) )ˆ( fpcv  obtained at each iteration of the sequential 

procedure. Iteration 0 gives the baseline results obtained with the initial database (9 points). 

 

As points are sequentially added to the database, the uncertainty exhibited in Figure 3.2 and 

reproduced in Figure 3.3-a (zoom) is reduced. The first two points added (see Figure 3.3-b) (red 

crosses) have a high predicted variance in the target area, as they are far from FDS points (red 

triangles). Their predicted mean is close to the threshold so that the level lines interpolate the points. 

The lines are also narrowed in between, close to an initial FDS point, which shows the effect of this 

point given the additional knowledge. 
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Figure 3.3 Contour plot (zoom) of the initial probability of excursion (a) and the updated probability of 

excursion after 2 points have been added at the first iteration of the sequential co-kriging procedure (b).  

The next two points added (see Figure 3.4-a) have also a predicted mean close to 200°C and yield 

reduced uncertainties so that 1-probability of non-conformity zones appear. Finally, two more points 

are needed (see Figure 3.4-b) to reach cv<=1%, with the effect of creating a 1-probability of non-

conformity zone, which means that fires starting with coordinates lying in this zone will lead to non-

conformity (UL>200°C). 

 

 

Figure 3.4 Contour plot of the updated probability of excursion at the second iteration of the sequential co-
kriging procedure (a) and at the third iteration (b). 

 

Conclusion: The methodology presented in this section to assess the conformity of an expensive 

computational code has proved efficient to overcome too parsimonious evaluations from an expensive 

code when fast approximations are available. This method builds on the kriging models usually used 
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to model code outputs, to improve the predictions of the kriging model of the expensive code. Another 

desirable feature is that the method allows smart sampling of new points targeting the non-conformity 

domain in order to further reduce the uncertainty of the probability of non-conformity. Although 

demonstrated in a simple but realistic case study, the method is flexible to take into account more 

complex relationships between the two codes in higher dimensional problems. 

 

 
Figure 3.5 Link to D3.2.2 Conformity assessment for computationally expensive systems: application to fire 

engineering safety
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4 Conformance probabilities for multivariate cases 
New software for assessing the conformance probability for bivariate cases has been developed, 

implemented, and validated with a number of case studies in NEW04 [§4.2]. One such case study is on 

health care products [§4.3], which has reported new analyses of decisions of conformity based on 

multivariate (surface topography, friction and hardness) and qualitative data (perceived smoothness of 

material surfaces (skin)). The introduction of psychometric (Rasch) and generalised linear modelling is 

considered in multivariate data analysis. 

In a metrological study of conformity assessment in a multivariate situation, the clear resolution of the 

multivariability into components associated with production and measurement errors presents a 

challenge (at least as significant as in the univariate case [Chapter 2]). In traditional pragmatic 

approaches to multivariate analysis, measurement uncertainty is assumed to be negligibly small. As 

we look to include explicitly measurement uncertainty in multivariate cases, useful analogies can be 

drawn with the reasonably established treatment of multivariate entity dispersion, as will be described 

below.  

 

Figure 4.1 Conforming and non-conforming regions for a bivariate Normal distribution [1] 

 

A simple illustration of bivariate conformance regions and probability density functions (PDF) is 

shown in Figure 4.1 (taken from multivariate process control where entity variation was assumed 

much larger than measurement uncertainty [1]. A value drawn at random from this PDF that lies 

within the tolerance region is a conforming value (blue); otherwise it is judged as a case of non-

conformity (red). For many draws from the PDF, the fraction of conforming values is the 

conformance probability [see [34] for multivariate terminology]. 

Unfortunately there are very few guidelines which treat the multivariate case about handling the risks 

of incorrect decisions caused by measurement uncertainty when attempting to answer questions about 
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an entity, for example, whether the test result is inside or outside specifications. Multivariate 

guidelines which specifically include cost modelling are even fewer.  

4.1 Post Office (PO) parcel problem 
To fix ideas (but the concepts are general), consider a simple bivariate problem, which we term the 

“Post Office parcel problem”.  

4.1.1 PO Problem: Specifications 
To qualify as a “standard parcel” in the UK, a package must satisfy the following conditions: 

 

 Length   𝐿 ≤ 1.5 m, 

 Length + Girth 𝐿 + 𝐺 ≤ 3.0 m, 

 Mass  𝑀 ≤ 20 kg. 

 

This is actually a trivariate problem (in the quantities L, G and M), but for illustrative purposes we 

assume the mass condition to be satisfied and therefore consider the bivariate problem given by the 

first two inequalities.  

 

The bivariate tolerance region is the wedge-shaped or trapezoidal region shown in figure 4.2 bounded 

by the inequalities: 

 
0 ≤ 𝐿 ≤ 1.5, 

 

0 ≤ 𝐿 + 𝐺 ≤ 3.0. 

 

(4.1) 

 
Figure 4.2 Wedge-shaped region denoting tolerance region for Post Office parcel problem 
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4.1.2 Measurements: PO Problem 
Two separate measurements are thus required (L and G) and the acceptance tests first consider L on its 

own and L + G. In addition, there will be correlation between L and G if they are both measured with 

the same instrument, so that both L and G inherit uncertainties that are associated with the calibration 

of the measuring instrument. In general in conformance testing, one aims to ensure that uncertainties 

associated with the measuring instrument itself are small (and perhaps negligible) compared with the 

uncertainties associated with the estimate of the value of the quality characteristics. In that case, 

decisions concerning entity results that fall close to the boundary of an acceptance interval will not be 

complicated by the need to consider the quality of the measurement system (such as the question of 

whether it is both true and precise enough for the conformance task in question). 

 

Suppose we have a PDF for the quantities L and G, which will generally be a joint PDF for L and G, 

but may be the product of a PDF for L and a PDF for G when these quantities are mutually 
independent.  The PDF for L and G would have often been obtained by a Monte Carlo method or by 

some other means (say, in WP2) to produce a point cloud taken as constituting a representative set of 

points.  

4.1.3 Conformance probabilities: PO Problem 
We divide the points in the cloud into feasible points in this instance points satisfying inequalities 

(4.1), and those that are unfeasible. The conformance probability is the probability that the possible 

pairs of values of L and G lie in the tolerance region.  For a PDF characterized by a point cloud, the 

conformance probability is (approximately) equal to the fraction of those points that are feasible.  In 

general, the conformance probability is the probability that a value of the quantity is feasible. 

 

In order to compute the conformance probability for the particular measurement results at hand, we 

integrate the measurement PDF, g, over the interval given by the two specifications [4.1] of the 

tolerance region.  

In the framework of the present work, calculations have been made assuming that a bivariate Normal 

distribution with the zero vector as mean and the identity matrix as covariance can be assigned to the 

quantities L and G. Additionally we introduce a correlation between L and G equal to 0.5. So the 

couple (L,G) follows a Normal distribution centred in zero and with 
1 0.5

0.5 1

 
 
 
 

 as covariance matrix, 

Σ. 

A general expression for the collective probability that all of q object variables, X, lie in conformance 

within their multivariate tolerance region is [35]: 
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(4.2) 

In the current bivariate case we have: 
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where  is the determinant of the covariance matrix and D(L,G) is the domain of integration. 
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where (X,Y) follows a bivariate Normal distribution with the zero vector as mean and 
1 1,5

1,5 3

 
 
 
 

 as 

covariance matrix. The use of the package mvtnorm on R [36] yields 0.3383063 as a theoretical result 

for the conformance probability, Cp . 

Supposing that we have N measures of L and G, which follow this kind of distribution and adding up 

all the measures contained in the previous interval, we can directly calculate, as a ratio, an estimation 

of the conformance probability. For example, we find, for a random set of 10000 measures, a 

conformance probability of 0.334. 

Reference [35] provides examples of calculations of how the bivariate conformance probability varies 

as a function of Σi,j, the correlation coefficient between components i and j, at various distances of the 

test result from the specification limit. 

4.1.4 Decision rules: PO Problem 
To determine if any one point lies within the tolerance region, a conformity check is required.  It is 

straightforward to carry out the check for the Post Office parcel problem (values of L and G that satisfy 

the inequalities).  In general it does not matter how complicated it is to test whether a point lies in the 

tolerance region.  The only consideration is that a test exists that can be implemented. 

Once the conformance probability has been established an appropriate decision rule is applied. 

 

It may be useful to have further knowledge than just the conformance probability, particularly as 

regards formulating decision rules.  A procedure in clause 7.7.4 of [34] can be applied to provide 
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a 100p % coverage region for the measurand (here L and G) according to stipulated coverage 

probability p.  Given a point cloud that procedure can be outlined thus: 

1 Construct a (hyper-)rectangular region in the space of the output quantities; 

 

2 Subdivide this rectangular region into a mesh of small rectangles; 

 

3 Assign each point in the cloud to the small rectangle containing it; 

 

4 Use the fraction of points assigned to each rectangle as the approximate probability that the 

quantity lies in that rectangle; 

 

5 List the rectangles in terms of decreasing probability; 

 

6 Form the cumulative sum of probabilities for these listed rectangles, stopping when this sum is 

no smaller than p; 

 

7 Take the corresponding set of rectangles as defining the smallest coverage region 

 

For a given coverage probability p, the 100p % coverage region is not unique.  The procedure provides 

(an approximation) to the smallest coverage region. The quality of the approximation depends on the 

level of discretization (size of the small rectangles) in step 2 and the number of points in the point 

cloud. 

 

In cases where it is not possible to obtain a representative set of points characterizing the PDF, we 

suggest two options: 

 

Option I (make a parametric assumption)  Provide as large a point cloud as economically 

possible.  Calculate the average and associated covariance matrix for these points.  

Take as the PDF for the measurand the multivariate Gaussian PDF having these 

parameters.  For details see note 5 of clause 7.7.2 of [34] 

 

Option II (invoke a pessimistically large — but safe — coverage region)  Use a multivariate 

counterpart of the Chebyshev or Gauss inequality [section 4.4.4, [37] to provide a 

coverage region for the measurand.  The use of this option would necessitate 

different considerations such as determining the intersection of two regions. 

 

A procedure that takes into account that a point may be unfeasible is as above except there is a further 

additional initial step and step 3 is modified: 

 

0 Initially mark each point as being feasible or unfeasible: 

 

3 Assign each feasible point in the cloud to the small rectangle containing it. 
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4.2 Software for conformity assessment in multivariate cases 
Software for the calculation of the conformance probability in bivariate cases has been developed and 

validated with different cases studies in WP3, such as the one related to health care products. It is a 

Matlab executable, which means that it doesn’t require any licence purchase from the end-user. It 

offers three possibilities, available through a main menu (Figure 4.3), depending on the available 

information: 

- “Conditional distributions” : Only the conditional distributions are available, 

- “Marginal distributions” : Only the marginal distributions are available, 

- “Joint probability distribution” :  The joint probability distribution is available. 

 

Figure 4.3 Screenshot of main menu of software "Conformance probability" 

 

4.2.1 Installation of software 
The software is distributed for Windows environment 32-bit or 64-bit. Prior to the first launch of the 

software, the user should ensure that the MATLAB Compiler Runtime (MCR), version 8.0 (R2012b), 

is installed on the computer. If not, it is possible to freely download the Windows 32-bit (or 64-bit) 

version of the MCR for R2012b from the MathWorks Website (Figure 4.4). 

http://www.mathworks.com/products/compiler/mcr/index.html 

http://www.mathworks.com/products/compiler/mcr/index.html
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Figure 4.4 Different versions of the MCR. R2012b (8.0) for Windows (32-bit or 64-bit) should be 

downloaded and installed before the first use of the software 
 

4.2.2 Functionalities 
The software offers three possibilities to compute the conformance probability, depending on the kind 

of available information. The user should choose in a main menu the kind of information available 

according to Figure 4.5. 

 

Figure 4.5 Main menu of the software for conformity assessment 

4.2.2.1 Joint probability distribution 

Let 𝑓(𝑌1;𝑌2) be the joint distribution for (𝑌1; 𝑌2) and [𝐿𝑆𝐿𝑌1
; 𝑈𝑆𝐿𝑌1

] × [𝐿𝑆𝐿𝑌2
; 𝑈𝑆𝐿𝑌2

] be the tolerance 

region, the conformance probability is then obtained as: 
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𝑃𝐶 = ∫ ∫ 𝑓(𝑌1;𝑌2)(𝑦1; 𝑦2)𝑑𝑦2

𝑈𝑆𝐿𝑌2

𝐿𝑆𝐿𝑌2

𝑑𝑦1

𝑈𝑆𝐿𝑌1

𝐿𝑆𝐿𝑌1

 

In the software, such an integral is estimated using the trapezoidal method. Available distributions are 

Multivariate Gaussian distribution and Multivariate t-distribution. An example is given in Figure 4.6 

where: 

- 𝑌 = (𝑌1, 𝑌1)𝑇 is Normally distributed with independent covariance matrix. 

- The conformance region is given as : [1499.8; 1500.2] × [1499.8; 1500.2] 

 

 

Figure 4.6 Example of computation of conformance probability based on joint probability distribution 

4.2.2.2 Marginal probability distributions 

In the case of independent quantities, the joint probability distribution is simply the product of the 

marginal distributions and the two-dimensional integral above can be simplified as the product of two 

one-dimensional integrals. Then, if 𝑓𝑌1
 and  𝑓𝑌2

 denote respectively the marginal probability 

distributions for 𝑌1 and 𝑌2, then the conformance probability can be obtained as : 

𝑃𝐶 = ∫ 𝑓𝑌1
(𝑦1)𝑑𝑦1

𝑈𝑆𝐿𝑌1

𝐿𝑆𝐿𝑌1

× ∫ 𝑓𝑌2
(𝑦2)𝑑𝑦2

𝑈𝑆𝐿𝑌2

𝐿𝑆𝐿𝑌2
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Both integrals are estimated in the software using the trapezoidal method. Available distributions are 

Beta, Gamma, log-normal, Gaussian, t-Student and Uniform. An example is given in Figure 3.7 

where: 

- Y1 and Y2 are normally distributed, 

- The conformance region is given as : [1499.8; 1500.2] × [1499.8; 1500.2] 

 

Figure 4.7 Example of computation of conformance probability based on marginal probability distributions 

 

4.2.2.3 Conditional probability distributions 

In some cases, only conditional distributions may be known to the user. The conformance probability 

may then be obtained as : 

𝑃𝐶 = ∫ ∫ 𝑓𝑌1
(𝑦1|𝑦2)𝑓𝑌2

(𝑦2)𝑑𝑦1

𝑈𝑆𝐿𝑌2

𝐿𝑆𝐿𝑌2

𝑑𝑦2

𝑈𝑆𝐿𝑌1

𝐿𝑆𝐿𝑌1

 

The computation of this integral is performed in the software using the Gibb’s algorithm. The user is 

expected to specify the related parameters (initial values of the Markov chains, number of loops and 

Burn-In), according to Figure 4.9.  The available probability distributions in this section are Normal, 

Beta, Binomial, Gamma and Inverse Gamma.  

An example of the computation of the conformance probability is given in Figure 4.8. 
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Figure 4.8 Example of computation of conformance probability based on conditional probability 
distributions 

 

 

 

Figure 4.9 Parameters for Gibbs algorithm 
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4.3 Multivariate case study of healthcare products 
Various healthcare studies [[38], [39], [2]] are chosen here to illustrate novel approaches to 

multivariate conformity assessment and decision-making, as reported in an intermediate report on case 

study on health care products in the earlier NEW04 deliverable D3.2.4. Such cases are characterised as 

dealing with properties important for consumers, such as smoothness of material surfaces (skin) as 

perceived in measurements by human panellists, which in turn depend on the surface topography, 

friction and hardness, of interest to the manufacturer wishing to fashion the product to the consumer’s 

satisfaction.  

Mathematical and statistical approaches to uncertainty evaluation are introduced in studies where 

typically there is no simple theory of how the perceived (‘response’) properties Z depend on the 

physical material (‘explanatory’) properties X of the material, that is, how the expression  XZ f  is 

to be formulated.  

Material and perceived quantities may be correlated in various ways and, in addition, limited 

measurement quality may enter on both sides of the expression. Principal component regression 

[Annex A of D3.2.4], consisting of an initial principal component analysis (PCA), can tackle 

correlation amongst the explanatory variables (X), thereby enabling both conformity assessment 

against explanatory variable X specification limits and multivariate regression including Z. A second 

challenge is that some measurements will be qualitative – such as the perceived ‘slipperiness’ in a 

current healthcare study – and require analysis on an ordinal scale, where many of the traditional tools 

of statistical analysis cannot be applied [Annex D of D3.2.4].  

Procedures for setting multivariate tolerance and specification regions and for calculating multivariate 

conformance properties are reviewed and applied. This includes validation of new software for 

bivariate conformance probability calculations developed in earlier parts of this NEW04 project 

[§4.2]. Methods for treatment of measurement uncertainty, reliability and decision risks in multivariate 

conformity assessment are developed, often drawing analogies with the treatment of corresponding 

product dispersion in traditional multivariate statistical process control. 

4.3.1 Conformance probabilities in multivariate cases: healthcare study 
An account of conformance probabilities for multivariate cases is given in Annex A of D3.2.4. An 

overall multivariate specification region has been proposed by [35] as the intersection of the 

specification regions  XXXS USLxLSLx  for the individual multiple variables (assumed 

independent) of the observation matrix X: 

 
q

i

iXiXiX
1

,,



 USLXLSL

    

(A.1) 

where lower respectively upper specification limits are set for X as follows in terms of the univariate 

specification limits: 

 
q

T

X LSLLSL ,...,1LSL ;
  

 q

T

X USLUSL ,...,1USL
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There remains in the international literature a number of different approaches to defining this 

multivariate specification region, see D3.2.4. 

The collective probability that all of the object variables lie in conformance within their multivariate 

tolerance region can be calculated with: 

 

   dX... dXX...Xg ... 

X ... X

qq

qXqqXXX

qX

qX

X

X

11

,,1,11,

,

,

1,

1,

,,

Pr





USL

LSL

USL

LSL

USLLSLUSLLSL

  

(A.2) 

When the different components, q, are independent: 

  i

q

i

iiiconform dXuXXg
iX

iX

 



1

,

,

,,Pr

USL

LSL
    

(A.3) 

Conformance probabilities in multivariate cases needed in the present healthcare studies can be 

evaluated using available software, such as in [36] for multivariate Normal and t distributions. 

MathCad contains a number of multivariate functions which we employ. Further, software has been 

developed in the present NEW04 project and is available specifically for calculation of conformance 

probabilities for bivariate cases, as reported above [§4.2].  

As we proceed with calculations of multivariate conformance probabilities in these healthcare studies, 

the target of each conformity assessment will be clearly specified: ‘Global’ conformity denotes the 

assessment of populations of typical entities, while ‘specific’ conformity assessment refers to 

inspection of single items or individuals, as defined by [13]. 

4.3.2 Specific observations X assessment: healthcare study 
As a typical case to be studied in healthcare, reference [2] has recently investigated how, for a set of 

topical formulations (skin creams), perception of various consumer-related quantities, Z, such as 

slipperiness and smoothness, when each cream is applied on human skin, is related to a number of 

physiochemical properties, X, measured when the same creams are applied on artificial skin 

substrates. 

We introduce the study by making firstly a multivariate analysis of the measured physiochemical 

properties, X, such as
0minBSFB (friction) and

0minBSFBA (adhesion), plotted in Figure 4.10 together 

with corresponding upper and lower specification limits (USL and LSL), respectively, as set by the 

manufacturer with due consideration to both what is feasible to manufacture but ultimately what is 

required by the consumer. 
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Figure 4.10 Correlation plot between a pair of explanatory variables X of six topical formulations [physical 
material properties: (x-axis)

0minBSFB (friction) and (y-axis)
0minBSFBA (adhesion)] and corresponding 

specification limits for the healthcare case studies [2] 

 

An initial study of specific conformity assessment - inspection of single items - was made in this 

bivariate healthcare case, where conformance probabilities associated with measurement uncertainty, 

um, were calculated using the software MathCad, assuming Normal distributions  2, muxN  ; no 

measurement correlation; and no correlation between the two physiochemical properties X (i)

0minBSFB (friction) and (ii)
0minBSFBA (adhesion), for two samples (B and F):  

Table 4.1 Summary of calculated bivariate X conformance probabilities in the healthcare study: specific 
conformity 

Specific conformity assessment 

 mi ux ,ˆ  

Sample B 

0minBSFB  
Sample B 

0minBSFBA  
Sample F 

0minBSFB  
Sample F 

0minBSFBA  

0,538(24) 0,34(11) 0,377(46) 0,162(25) 

USL 0,5 0,2 0,5 0,2 

LSL 0,1 0,1 0,1 0,1 

Univariate 
conformance 

probabilities 

    111

2

)ˆ(

1111,,1,
ˆ;

2

1
,ˆPr,ˆ

2

2

USLxLSLdxe
u

uxUSLxLSLuxP
x

x

m

USL

LSL

u

xx

m

mmconf 


 








 

 
5,667% 

 
8,959% 

 
99,625% 

 
92,918% 

Bivariate 
conformance 

probabilities 

(assuming 
zero 

covariance) 

   mconfmconf uxPuxP ,ˆ,ˆ
1,,2,1,,1,    

[eq. A.3] 

 
0,5077066% 

 
92,56923% 

Validation,  

Bivariate 
conformance 

probabilities 

Pc (NEW04 
D3.1.5) 

Joint probability distributions: Normal 0,507707% 92,5692% 

 

There is excellent agreement from this validation study between bivariate conformance probabilities 

calculated with the MathCad and MatLab softwares.  
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4.3.3 Specific PC assessment: healthcare study 
It is evident from Figure 4.10 that there is some degree of correlation amongst the pair of material 

property values plotted.  

Covariance and correlation matrices, respectively, for the pair of explanatory variables X [physical 

material properties,
0minBSFB (friction) and 

0minBSFBA (adhesion) in the present healthcare case for a set 

of topical formulations (skin creams), plotted in Figure 4.10] were deduced from the experimental data 

with a MathCad program for PCA developed in the project: 



















33

3

10957,710846,8

10846,8011,0
Cov(X) ; 










1959,0

959,01
Cor(X)   (4.3) 

using the MathCad function  

 

where the non-zero off-diagonal elements of Cor(X) indicate the degree of correlation. 

Note that the appreciable correlation evident from the off-diagonal elements of the matrices of eq. 

(4.3) is not a measurement covariance but rather an actual correlation between the different material 

properties, e.g. one might expect there would be a relation between the adhesion and friction when 

specimens are formulated, for instance. Such correlation is not unusual, particularly in investigations 

such as the present where one deliberately chooses to measure a number of explanatory properties on 

which the consumer response is expected to depend in various ways.  

Calculation of conformance probabilities will need to take account of this correlation, as is 

demonstrated with a principal component analysis [§A.2.3 of D3.2.4], as an example of PCA 

multivariate conformity assessment [§A.2.4 of D3.2.4] against principal component specification 

limits. According to the new bivariate conformance probabilities Pc software (NEW04 D3.1.5, §4.2), 

allowing for the covariances in X (from eq. (4.3)), conformance probabilities for one sample (e.g. item 

F) of 36,9% assuming zero covariance, increase to 42,1% including covariance.  

4.3.4 Specific PC Region: Healthcare study 
To eliminate this covariance, which confounds the calculation of conformance probabilities, a PCA 

analysis [§A.2.2 of Annex A of D3.2.2] in the current healthcare case is now made. 

For this PCA, a linear model is assumed with model errors xε : 

xεPTX       (A.6) 
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and the data matrix (X) is first centred. The PCs are the eigenvectors of the covariance matrix of X, 

that is, the vectors p1, p2, ..., pk satisfying the equations 

nn ppCov(X)  n     (A.7) 

where λn is the n
th
 eigenvalue of  XCov .  

In the present case, two (k = 2) principal components p1, p2 of variation amongst the physiochemical 

properties were identified: 








 


759,0651,0

651,0759,0
P      (4.4) 

using the MathCad function  to calculate the eigenvalues, λk, followed by 

 as an evaluation of eq. (A.7) in Annex A of D3.2.4. 

The resulting covariance matrix: 













410761,30

0018,0
')Cov(X     (4.5) 

for the transformed data set PXX '  clearly shows, with the zero off-diagonal elements, the 

orthogonality of the two PCs.  

Adopting the approach of [40] a multivariate PC specification region 

 PCiPCiPC yyS USLLSLX  '1   [§A.2.4 (A.8) of D3.2.4] in the current healthcare case is 

bounded by: 
































174,0

510,0

2,0

5,0

759,0651,0

651,0759,0
USLpUSL

T

pc
 





























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1,0

1,0
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LSLpLSL

T

pc
 



 150529   

A guide to decision-making and conformity assessment 

 

 

36 

 

A report of the EMRP joint research project 

NEW04 “Novel mathematical and statistical approaches to uncertainty evaluation” 

 

Figure 4.11 Correlation plot between a pair of explanatory variables X’ of six topical formulations [physical 
material properties: (x-axis)

0minBSFB (friction) and (y-axis)
0minBSFBA (adhesion)] and PC corresponding 

specification limits for the healthcare case studies [2]. Dispersion intervals on each point are based on correlation 
matrix (measurement uncertainty neglected) 

 

Figure 4.11 show the corresponding bivariate conformity assessment in the space of the principal 

components (PC1 and PC2) and indicates that most of the variability is concentrated in the first 

principal component, which of course reflects – as observed in Figure 4.10 – that the observations 

amongst the six samples are clustered in essentially only two distinct points, thus providing a 

challenge to reliable correlation estimation. 

Table 4.2 Summary of calculated bivariate PC conformance probabilities in the healthcare study: specific 
conformity 

Specific conformity assessment 

 mi ux ,ˆ  

Sample B 

0minBSFB  
Sample B 

0minBSFBA  
Sample F 

0minBSFB  
Sample F 

0minBSFBA  

0,629(24) -0,093(11) 0,392(46) -0,122(25) 

USL 0,510 0,011 0,510 0,011 

LSL 0,141 -0,173 0,141 -0,173 

Univariate 

conformance 
probabilities 

    111

2

)ˆ(

1111,,1,
ˆ;

2

1
,ˆPr,ˆ

2

2

USLxLSLdxe
u

uxUSLxLSLuxP
x

x

m

USL

LSL

u

xx

m

mmconf 


 








 

 

18,863% 

 

99,998% 

 

77,700% 

 

99,584% 

Bivariate 

conformance 

probabilities 
(assuming 

zero 

covariance) 

   mconfmconf uxPuxP ,ˆ,ˆ
1,,2,1,,1,    

[eq. A.3] 

 

18,863% 

 

77,377% 

Validation,  
Bivariate 

conformance 

probabilities 

Pc (NEW04 

D3.1.5) 

Joint probability distributions: Normal 18,7409% 77,9757% 

Even in this PC assessment case, there is evidently excellent agreement from this validation study 

between bivariate conformance probabilities calculated with the MathCad and MatLab software.  
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Note finally that the above PC conformity assessment has neglected measurement uncertainty. In §6 of 

D3.2.4 an account is given of how to include the (smaller) additional effects of measurement 

uncertainty on decision risks. 

4.3.5 Results of PCR: healthcare study 
In Figures 4.12 are shown for comparison typical results of principal component regressions (PCR) for 

(a) traditional test theory and (b) Rasch analysis [Annex D of D3.2.4], providing explicit relations 

between sensory (‘Slipperiness’) and explanatory variables. 

      

Figures 4.12 Relations in the healthcare study between sensory response (Slipperiness) (a) conventional test 
theory, (b) Rasch item parameters ϴ) for the 6 samples, measured (y-axis) and predicted (x-axis) from 

explanatory variables (ForceBoard, BIOSKIN) from PCR analyses [2] 

 

It is evident from Figure 4.12 that the Rasch analysis of the sensory data yields lower measurement 

uncertainties than conventional test theory, thanks to Rasch analysis’ ability to treat ordinal data 

properly as well as to provide separate estimates of item (sample cream) and person (sensory panellist) 

attribute values. 
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Figure 4.13 Link to D3.2.4 Case study of health care products
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5 Costs and Economic Risks in Conformity Assessment 
 

None of the major recent guides about the role of measurement uncertainty in Conformity Assessment deal 

with costs and impact into risk assessment in Conformity Assessment. 

 

Ultimately when appropriate [or fit-for-purpose [41]] levels of uncertainty and associated risks of 

incorrect decisions are to be set, reference will need to be made to measures of impact for these 

various stakeholder groups. The arbitrariness of various rule-of-thumb limits [§2.2.3] on measurement 

uncertainty may be resolved by economic consideration.  

There are examples of successful implementation in areas such as the legal metrological control of 

measurement instruments in a range of societal important sectors such as utility, commodity and 

environmental monitoring. Examples of loss function implementation in legal metrology cover 

instrument categories such as: 

 electricity meters [3] 

 exhaust gas analysers [42] 

 fuel meters [43] 

Additionally an analysis of loss models in pre-packaged goods provides a prototype to general product 

conformity assessment [44],[15]. 

Economic costs for both analysis and consequence are admittedly sometimes difficult to estimate and 

not always the best measure of impact. It is better, however, to attempt an economic analysis – 

however rough and ready – than to set arbitrarily impact costs of incorrect decisions from 

measurement uncertainty to zero. None of the major recent guides about the role of measurement 

uncertainty in Conformity Assessment deal in depth with costs and impact into risk-assessment in 

Conformity Assessment and the current literature survey has provided a summary of recent literature 

in this area. 

This section of the Guide gives reference to literature where loss functions and economic decision 

theory have started to be introduced when considering this role.  

In Fig. 5.1 an overall picture of the classic decision table (figure 2.3) but including costs explicitly is 

given of sources of both profit and loss from the point of view of the supplier when assessing the 

conformity of a particular value of an important characteristic of the entity of interest.  

Irrespective of the result of product (or entity) conformity, there will always be the costs of production 

and testing of product (at the centre of Fig. 5.1). Then, for each specimen of product, the actual true 

value, µ (although unknowable exactly), of the characteristic will either conform or not conform 

depending on whether the value is inside or outside, respectively, of a specification limit (USL, upper 

specification limit in the current example). Correct decisions of conformity relate to both the profit 

made on selling product which has been correctly assessed to be conforming (top, left of Fig. 5.1), and 

the losses made on product correctly assessed to be non-conforming (bottom, right of Fig. 5.1).  
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Figure 5.1 Different costs and income of conformity-assessed entity from the point of view of the supplier. 
Green represents a profit, while red represents a loss [adapted from [3]] 

 

A general formulation of the overall profit [45] would be a sum of the various incomes and losses 

shown in Fig. 5.1, including: (a) Income from sales of passed, conforming product; (b) Loss associated 

with customer risk (passed, non-conforming product); (c) Cost of (all) manufactured product 

(exclusive test); (d) Cost of testing (all) product; (e) Loss associated with re-manufacturing with 

supplier risk (failed, conforming product); and (f) Loss associated with re-testing with supplier risk 

(failed, conforming product). 

5.1.1 Introducing cost into Conformity Assessment risks 
In general, the impact of a wrong decision in Conformity Assessment is expressed as a risk R, defined 

as the probability p of the wrong decision occurring multiplied by the cost C of the consequences of 

the incorrect decision [7]:  

CpR 
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5.1.2 Balancing test costs against consequence costs 
An in-correct accept on inspection of a non-conforming object will lead to customer costs associated 

with out-of-tolerance product. Overall costs, consisting of a sum of testing costs, D, and the costs, C, 

associated with customer risk, can be calculated with the expression: 







dgC
D

CDE
PVR

   )ˆ()()(),(),(
2   (5.1)  

associated with a finite spread in object values described with a probability density function g with 

dispersion σ and mean PVR̂ , where RPV denotes the region of permissible values - an expression 

which can be applied to both specific and global conformity assessment – see [15] for details. 

Examples of explicitly including a cost function in the integrand when evaluating expression (5.1) for 

optimized uncertainty by variable can be found in [3] and references therein.  

Eq. (5.1) can be evaluated in two complementary ways, as summarised in Figure 5.2: 

 a range of quantity values of mSLmmSL uhLyuhL  for a given test uncertainty, mu

, and ‘guard-band’ factor h – yielding an “operating cost characteristic” analogous to the 

traditional, probability-based operating characteristic 

 a range of test uncertainties, mu , for a given quantity value SLm Ly  , the so-called 

“optimised uncertainty curve”. 
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Figure 5.2 Including cost and impact in operating characteristics and optimised dispersion
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5.1.3 Optimised uncertainties: by variable and by attribute 
Estimation of optimised sampling uncertainties - where measurement costs are balanced against 

consequence costs of incorrect decisions of compliance according to the expression (5.1) – is good 

practice ahead of any measurement task. 

As an example, the case study of conformance assessment of electrical energy meters investigated by 

risk analysis reported in the next section [§5.2] can usefully design experiments in advance by 

optimising measurement uncertainties when:  

 testing errors in meter display by variable 

The consequence cost of incorrectly accepting non-conforming meters can be calculated from the 

product of overall cost times the probability of incorrect decisions with respect to metrological (by 

variable) upper and lower specification limits, USLz and LSLz, on meter reading error (MPE = 3.5%). 

For a specific sample of electricity meters, typically with a mean error of -1.2% and standard deviation 

2.5%, and weighted linearly with z:  
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In these expressions ‘Cost’ is the average loss of revenue: the national annual tax cost, estimated to be 

47.5%·0.06€/kWh·40·10
9
kWh = 1.1 G€/year, based, respectively, on a 47.5% tax rate; an overall cost 

of energy per kWh (including price and grid rent); and the national annual electrical energy 

consumption in kWh [46]. (Similar calculations can be done for other losses shown in the decision 

matrix of Figure 5.1.) 

 sampling fraction non-conforming meters by attribute 

A main source of uncertainty in attribute sampling is the finite number of meters in any batch. This is 

a statistical uncertainty, in the number of non-conforming units, where the non-conforming fraction 

n

d
p ˆ can be well represented as a random variable following a binomial distribution, where the 

probability of selecting M = d non-conforming and (n – d) conforming entities when a sample of size n 

if taken from an infinitely large population is given by: 
)(

, )ˆ1(ˆ
)!(!

!ˆ dnd

kj
samplepp

dNd

N
P





  

[Account of finite population size in estimating sampling uncertainties has to be taken for sample sizes 

which are more than 1/10th of the total entity population [47]] 
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The standard deviation of a discrete binomial distribution, 
n

pp
p

)ˆ1(ˆ
ˆ


 , appears to be a natural 

choice for estimating a standard sampling uncertainty, usample, based on the corresponding confidence 

interval for p̂  [48]. With d = 2 and n = 50, this uncertainty is about 2.8%. 

In the present case, an optimised attribute sampling uncertainty based on consumer risk is given by the 

following version of eq. 5.1: 

  ),,( ˆ2, pbinomialLSLUSL

sample

np

attrUSL SLndCC
u

D
E  ,  (5.2) 

for a sample of size n and actual observed number of non-conforming entities, d; where the costs of 

sampling, Dnp, were taken to be typically to be 147€ per sample.  

The consumer risk, in percentage terms, i.e. the probability, PNC, of passing non-conforming meters – 

can be expressed by the cumulative binomial distribution beyond a specification limit, SLp, on the 

fraction non-conforming instruments 
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Figure 5.3  Costs as function of attribute sampling size for electricity meters (red line: eq. 5.2; blue line testing 
costs) 

 

Figure 5.3 illustrates how overall costs vary with the number of instruments sampled (assuming an 

infinite population) and how an optimised sampling uncertainty and corresponding sample size 

[48] can be identified in relation to traditional sampling planning limits AQL and LQL [47] for the 
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example of electricity meters. Where the actual optimum sampling uncertainty (and sample size) 

will lie will of course be determined both by actual sampling costs as well as the choice of 

specification limit (even that economically motivated) on the maximum permissible fraction non-

conforming product. 

This new optimised sampling uncertainty methodology, extends traditional attribute sampling plans to 

include economic assessments of the costs of measuring, testing and sampling together with the costs 

of incorrect decision-making. 

 

Figure 5.4 Link to Conformance assessment of electrical energy meters investigated by risk analysis – a 
case study 
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6 Concluding remarks 
The subject of this guide and the research of this work package of the NEW04 project - Decisions 

based on measurement – lies close to various stakeholder groups where the impact of limited 

measurement uncertainty is most tangible.  

It is therefore natural that reference can be made to impact related activities in the NEW04 project, as 

reported by WP4. During the course of this project, many contacts have been made – for instance the 

IMEKO TC21, ISO TC 69/SC6 ‘Measurement methods and results’ technical standardisation 

committees – where guides such as the present document are a primary source of information. 
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