Production and certification of Pd and Pt single spikes

Jochen Vogl¹, Janine Noordmann², Olaf Rienitz², Dorit Becker¹, Maren Koenig¹, Christian Meyer¹

Federal Institute for Materials Research and Testing

BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany ² Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

Introduction

- Isotope dilution mass spectrometry (IDMS) is considered as one of the most powerful & accurate methods for elemental analysis [1].
- IDMS is based on weighings and isotope ratio determination
- Therefore IDMS is largely unaffectedy by losses of analyte, because each subsample reflects the same isotope ratio.

Preparation of back-spikes

- According to BAM quality standards two independent back-spike materials are used for spike characterizations
- > Pd high purity starting material for preparing primary assays:
 - Material A offers a claimed purity of 99.99 % (Alfa Aeser)
 - Material B offers a claimed purity of 99.9 % (Heraeus)
- > IDMS is also largely unaffected by instrumental drift, setup, matrix or sample preparation, provided blank, interferences and mass discrimination is under control.
- Considering this, IDMS is the most important reference method for elemental analysis, offering smallest measurement uncertainties.
- Due to the above described advantages IDMS often is applied for quantification of platinum group elements (PGE), either for reference material characterization or for geochemical research.

Objective

Production, characterization and certification of a ¹⁹⁴Pt and a ¹⁰⁶Pd spike solution

Selection of isotopes

- Isobaric interferences on all Pd isotopes but ¹⁰⁵Pd
- Cd and molecular interferences, e.g. ⁸⁸Sr¹⁶O, can be separated by ion exchange
- ¹⁰⁵Dd is notural reference is stone

- > Pt high purity starting material for preparing primary assays:
 - Material A offers a claimed purity of 99.99 % (Alfa Aeser);
 - Material B offers a claimed purity of 99.9 % (Heraeus)
- Preparation of stock solutions under full gravimetric control

Characterization measurements

- > 3 ampoules of each spike
- Each spike solution mixed twice with each back-spike
- 12 blends measured twice with a MC-ICPMS (Thermo Neptune)
 - Ru, Cd and Hg have been measured simultaneously and found at background level
 - Other interferences have been checked separately with a HR-ICP-MS (Thermo Element 2)
 - > Pd & Pt $w = 200 \ \mu g \cdot kg^{-1}$

Pais	natu	raire	rerer	nce	ISOLO	pe

¹⁰⁶Pd is selected as spike isotope

		Hg 194	Hg 195	Hg 196 0.15 %	Hg 197	Hg 198 9.97 %	Hg 199 16.87 %	Hg 20 23.10
	Au 192	Au 193	Au 194	Au 195	Au 196	Au 197 100 %	Au 198	Au 1
Pt 190 0.014 % 6.5·10 ¹¹ a α : 100%	Pt 191 2.83 d	Pt 192 0.78 %	Pt 193 50 a	Pt 194 32.97 %	Pt 195 33.83 %	Pt 196 25.24 %	Pt 197 19.89 h	Pt 19 7.16
ir 189	lr 190	lr 191 37.3 %	lr 192	Ir 193 62.7 %	lr 194	lr 195	lr 196	
Os 188 13.29 %	Os 189 16.21 %	Os 190 26.36 %	Os 191	Os 192 40.93 %	Os 193	Os 194		

- Isobaric interferences on ¹⁹⁰Pt, ¹⁹²Pt.¹⁹⁶Pt&¹⁹⁸Pt
- Molecular interferences, e.g. ¹⁵⁶Gd⁴⁰Ar, can be separated by ion exchange
- ¹⁹⁵Pt is natural reference isotope
- ¹⁹⁴Pt is selected as spike isotope

Preparation and ampoulation of spikes

¹⁰⁶Pd spike

- ♦ 40 mg ¹⁰⁶Pd from Oak Ridge National Laboratories
- Chemical purity > 0.9999 kg·kg⁻¹
- \rightarrow ¹⁰⁶Pd enrichment ~ 0.9848 mol·mol⁻¹
- Mass fractions in final solution: $(HCI) = 0.20 \text{ kg} \cdot \text{kg}^{-1}$

Results and Discussion

- Main observed isotope ratios: ¹⁰⁵Pd/¹⁰⁶Pd, ¹⁹⁵Pt/¹⁹⁴Pt
- "Internal" precision (std. dev.) better than 0.005 % for blends & standards, and better than 0.05 % for spike measurements
- Reproducibility is ~ 0.005 % (back-spike, SD_{mean}, 25 h)
- Standard deviation of all blends is 0.02%, SD_{mean} is 0.006 %
- Determined ¹⁰⁶Pd mass fraction: 20.235 (16) mg·kg⁻¹
- Determined ¹⁹⁴Pt mass fraction: 18.185 (78) mg·kg⁻¹
- > The isotope amount fractions are as follows:

n(¹⁰²Pd)/*n*(Pd) *n*(¹⁰⁴Pd)/*n*(Pd) *n*(¹⁰⁵Pd)/*n*(Pd) *n*(¹⁰⁶Pd)/*n*(Pd) *n*(¹⁰⁸Pd)/*n*(Pd) *n*(¹¹⁰Pd)/*n*(Pd) 0.00007798 (93) 0.0012287(78) 0.007408(21) 0.985429(31) 0.004717(18) 0.0011393(85)

<i>n</i> (¹⁹⁰ Pt)/ <i>n</i> (Pt)	<i>n</i> (¹⁹² Pt)/ <i>n</i> (Pt)	<i>n</i> (¹⁹⁴ Pt)/ <i>n</i> (Pt)	<i>n</i> (¹⁹⁵ Pt)/ <i>n</i> (Pt)	<i>n</i> (¹⁹⁶ Pt)/ <i>n</i> (Pt)	<i>n</i> (¹⁹⁸ Pt)/ <i>n</i> (Pt)
0.00000108(51)	0.0003125(19)	0.91430(36)	0.06755(30)	0.015990(63)	0.001848(13)

Conclusion

¹⁰⁶Pd & ¹⁹⁴Pt spike have been successfully characterized, ERM certification procedure is running

¹⁹⁴Pt spike

 \rightarrow w(Pd) ~ 18 mg·kg⁻¹ In precleaned quartz ampoules Flame sealing of ampoules

♦ 40 mg ¹⁹⁴Pt from Oak Ridge National Laboratories

Chemical purity > 0.9999 kg·kg⁻¹

¹⁹⁴Pt enrichment ~ 0.9146 mol·mol⁻¹ Mass fractions in final solution

 $(HCI) = 0.20 \text{ kg} \cdot \text{kg}^{-1}$

 $(Pt) \sim 18 \text{ mg} \cdot \text{kg}^{-1}$

Precleaned quartz ampoules Flame sealing of ampoules

Measurement uncertainties are dominated by IUPAC values [2], which cancel in double IDMS; setting them constant, results in $w(^{106}Pd) = 20.2347 (53) \text{ mg} \cdot \text{kg}^{-1}$ lower uncertainties: $w(^{194}\text{Pt}) = 18.1851 (51) \text{ mg} \text{kg}^{-1}$

K-factors for Pt were inconsistent; recalculation with exponential law results in improved isotopic composition for natural Pt

Acknowledgement

Financial support by EMRP (the European Metrology Research Programme) is gratefully acknowledged (EMRP-ENV02 "ParEmission") [3]. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Literature

[1] Vogl J, Pritzkow W, MAPAN – Journal of Metrology Society of India, 25 (2010) 135-164 [2] Berglund M, Wieser ME, Pure Appl. Chem. 2011, 83, 397-410. [3] EMRP-ENV02 ", PartEmission", http://www.ptb.de/emrp/partemission.html