Microdosimetry at nanometre level

Stefano Agosteo¹, Paolo Colautti², Valeria Conte², Roberto Delbono¹, Davide Bortot¹, Elena Sagia¹, Andrea Pola¹

¹Politecnico di Milano and INFN-Milano, I-20133 Milano, Italy ² INFN Laboratori di Legnaro, I-35020 Legnaro, Italy

Introduction

Biological damage initiates at DNA level.

Classical microdosimetry measures at micrometre level (chromosomes).

Nowadays, investigation at nanometre level is experimentally feasible. However, the experimental set-up is very complex and cannot be employed in clinical radiation fields.

Chromosome

Is it possible to use TEPCs at nanometre level?

The advantage of performing TEPC measurements at nanometre level

TEPCs data processing at nanometre level could take advantage from all recent track structure findings.

At nanometric level, the TEPC saturation function could be invariant with respect to radiation fields.

That invariance is reasonable, since the interaction is measured in the same site size where the initial biological damage occurs

Courtesy of Bernd Grosswendt

Mini TEPCs are single-wire gas proportional counters

Mini TEPCs are single-wire gas proportional counters

Mini TEPCs cannot measure at nanometre level

Electronic avalanche profile inside the mini TEPC

P.Segur, P.Olko and P.Colautti. Radiation Protection Dosimetry 61, 323-350 (1995).

Microdosimetric Measurements In Nanometric Sites With The Avalanche Confinement TEPC

The avalanche-confinement TEPC forces the electronic avalanche inside the helix volume

Gas pressure was set by using (at 0 °C) a ratio of 0.244 nm/Pa for the C_3H_8 -TE mixture and a ratio of 0.258 nm/Pa for DME

Electronic avalanche profile inside the avalanche confinement TEPC

R /mm

Comparison experimental and MC data Gamma rays from a ¹³⁷Cs source

V.Cesari et al. Rad.Prot.Dosim. 99, 337-342, 2002

Photon microdosimetric spectra against the average ionisation density at different simulated site sizes

Neutron microdosimetric spectra against the average ionisation density at different simulated site sizes

Neutron microdosimetric spectra against the average ionisation density at different simulated site sizes

At nanometre diameters mean value ratios approach RBE value

Avalanche-confinement TEPC

Principle of operation: two variables and two parameters

Avalanche-confinement TEPC

Setting the V_g - V_c values giving a quasi-constant amplitude of the signal from an α source

Avalanche-confinement TEPC

Setting the V_g - V_c values giving a quasi-constant amplitude of the signal from an α source

Working window

The avalanche is confined inside the windows

Working window

At low pressure, the window shrinks for high K_{in} values, thus limiting the maximum gain.

Future Research

 A new avalanche confinement TEPC is being constructed. Measurements will be performed in ion beams and results will be analysed on the basis of track-structure properties assessed with LNL track-nanodosimeter.

- Main goals:
- Decrease sensitive site size.
- Develop a portable nanodosimeter