20IND13

Sustainable advanced flow meter calibration for the transport sector

Realisation and measurement of dynamic flow changes

Heiko Warnecke

- The measurement behavior of flow meters under dynamic loads and at low flow rates is not well known
- No capabilities for calibrations under dynamic flow conditions available
- Is the measurement accuracy of a flow meter given?

- Therefore:
 - Derivation of the **Input** to be realised on the test rigs
 - Setup of Infrastructure to generate traceable profiles
 - **Evaluation** of the metrological infrastructure, processes and profile realisations

flow measurement necessary in three different orders of magnitude:

~ 50 l/h

~ 500 l/h

Input truck profile

Input passenger car profile

Infrastructure

=> Traceability ensured

Infrastructure

- Issues to be addressed:
 - Synchronisation between meter and reference signals
 - Validation procedure
 - High resolution data
 - Suitable flow meter ->

• Step response investigations

Truck car profile

Results with water

 Good agreement between specification and measurements of the gravimetric references

Passenger car profile

 Good general agreement between specification and measurement

Test rig (white spirit)

Measurement of dynamic flow changes

Validation with different methods:

- Dynamic weighing
- Coriolis flow meter
- ...

Evaluation criteria

Additional criteria for evaluation necessary due to dynamic loads:

- Mean value of the standard deviations
- Mean value of the residuals
- Response time for flow changes
- Deviation of the measured total mass

Warnecke et al 2022 Metrologia https://doi.org/10.1088/1681-7575/ac566e

- Dynamic profiles available according to which a flow meter can be tested
- Infrastructure in development to realise profiles with different technologies
- Additional criteria needed and specified for evaluation

Outlook

- Temperature effects?
- Optimisation of profile realisation for flow rates < 1 l/h
- Regular assessment by applying evaluation criteria

20IND13

Sustainable advanced flow meter calibration for the transport sector

Supporting the future

Acknowledgement

This project (EMPIR JRP 20IND13 SAFEST) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

Heiko Warnecke

Phone: 0531 592-1389

Email: Heiko.Warnecke@ptb.de

https://www.ptb.de/empir2021/safest/the-project/

