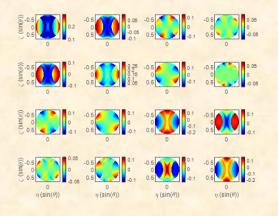
Workpackage 1: Far field metrology within the Rayleigh regime

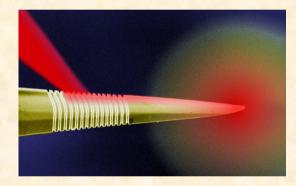

To select and exploit the essential information that can be extracted from the interaction of a light probe and an unknown object by taking advantage of all possible degrees of freedom that intervene in a lightmatter interaction process.

Workpackage 2: Inelastic, non-linear and resonant optical metrology

To exploit and make available the potential of inelastic, nonlinear and resonant processes to enhance diffraction-based optical methods, to provide novel or improved super-resolution microscopy methods for universal metrology applications.

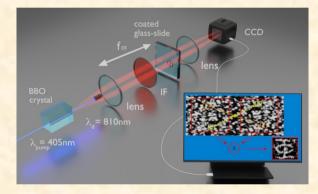
Workpackage 3: Innovative imaging methods by light shaping in the classical and quantum domains

To exploit the spatial degree of freedom of a light field, both in the classical and quantum domains. Engineered states of light hold the potential to largely increase the sensitivity of measurements of specific geometrical or physical parameters of a nano-target.



T1.1: Multidimensional (spatial, spectral, polarization-based) techniques and structured illumination

T1.2: Inverse scattering, advanced inversion and inference methods


T1.3: Traceability for optical metrology within the Rayleigh regime

- T2.1: Metamaterials-enhanced and resonant scattering methods
- T2.2: Super-resolution Raman imaging and Raman scatterometry
- T2.3 Label-free super-resolution imaging
- T2.4: Traceability for optical metrology within the inelastic scattering regime

T3.1: Quantitative phase retrieval in classical and quantum regime

T3.2: Quantum structured illumination

T3.3: Traceability for phase-sensitive optical metrology within the classical and quantum domains

Coordinator:

Bernd Bodermann PTB, Germany Email: <u>Bernd.Bodermann@ptb.de</u>

Partners:

Physikalisch-Technische Bundesanstalt (PTB), Germany Czech Metrology Institute (CMI), Czech Republic Dansk Fundamental Metrologi A/S (DFM), Denmark Istituto Nazionale di Ricerca Metrologica (INRIM), Italy Federale Overheidsdienst Economie, KMO, Belgium VSL B.V., The Netherlands Danmarks Tekniske Universitet (DTU), Denmark Energiatududományi Kutatóközpon, Hungary Friedrich-Schiller-Universität Jena (FSUJ), Germany Institut de Ciencies Fotoniques (ICFO), Spain JCMwave, GMBH, Germany Swansea Universität Braunschweig (TUBS), Germany Technische Universiteit Delft (TUD), Netherlands Università degli Studi di Torino (UNITO), Italy

Visit our website:

https://www.ptb.de/empir2021/polight/home/

EMPIR EURAPET The EMPIR Initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Pushing bOundaries of nano-dimensional metrology by Light

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Pushing bOundaries of nano-dimensional metrology by Light

EMPIR/EURAMET Project 20FUN02

The goal of the project is be to develop new optical measurement techniques for the investigation of structures at the nanoscale with traceable spatial resolution beyond classical limits and sub-nanometre accuracy. Approaches to higher resolution systems include:

- the development of new "metamaterial" structures;
- near-field methods;
- quantum optics techniques that exploit photon entanglement;
- the decoding of other information contained in optical waves
- universal label-free super-resolution microscopy

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States