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Abstract: In the framework of the EMPIR projects MyRailS and WindEFCY, METAS developed a primary
standard for electrical power using commercial off-the-shelf components. The only custom part
is the software that controls the sampling system and determines the amplitude and phase of the
different frequency components of voltage and current. The system operates from DC up to 9 kHz,
even with distorted signals. The basic system is limited to 700 V and 21 A. Its power uncertainty
is 15 µW/VA at power frequencies and increases to 1.8 mW/VA at 9 kHz. With the extension up
to 1000 V and 360 A, the system reaches power uncertainties of 20 µW/VA at power frequencies,
increasing to 510 µW/VA at 9 kHz. For higher voltages or higher currents, the same principle is used.
However, the uncertainties are dominated by the stability of the sources. The voltage and current
channels can also be used independently to calibrate and test power quality instruments. Thanks to a
time-stamping system, the system can also be used to calibrate phasor measurement units, which are
synchronised to UTC.

Keywords: electrical power; EMPIR; MyRailS; WindEFCY; PMU; power quality; power standard;
sampling; traceability; uncertainty

1. Introduction

In the framework of the EMPIR project MyRailS [1], calibration facilities for energy
meters and power quality monitoring systems were developed for railway applications. In
the framework of the EMPIR project WindEFCY [2], calibration facilities for synchronised
electrical power measurement are developed as part of an efficiency measurement set-up
for wind turbines.

As part of its contribution, METAS, the Swiss national metrology institute, developed
a primary standard for electrical power using a power calibrator as voltage and current
source, shunts, sampling voltmeters and a time-stamping system (Section 2). All hardware
is based on commercial off-the-shelf (COTS) components to make the system easily repro-
ducible and maintainable. Custom software controls the sampling system and determines
the amplitude and phase of the different frequency components of voltage and current [3].
The system operates from DC up to 9 kHz, with both pure and distorted signals. The
active power uncertainty is 15 µW/VA at power frequencies and increases to 1.8 mW/VA
at 9 kHz (Section 3).

Demonstrated metrological traceability is essential in science. Without it, scientific
results cannot be compared [4]. Comparability is essential to reproducibility, and repro-
ducibility is a fundamental principle of science [5]. In industrial applications, traceability is
a requirement for quality, since, otherwise, the compliance with specifications cannot be
shown. Consequently, traceability is a requirement of ISO/IEC 17025 [6]. Therefore, this
system was used in a comparison (Section 4) with PTB, the German national metrology
institute, with pure sine signals at 120 and 240 V, 5 A, and 52.63 Hz. The active power
measurements of the primary power standards of METAS and PTB agree within 4 µW/VA.
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With the extension (Section 5) up to 1000 V and 360 A, power uncertainties of 20 µW/VA
are reached at power frequencies, increasing to 510 µW/VA at 9 kHz. For higher voltages or
higher currents, the same principle is used. Currents of multiple kiloamperes and voltages
in excess of 100 kV can be generated in transformer calibration labs such as METAS’s. The
corresponding sources can be integrated into this system provided they allow for synchro-
nisation of the voltage and current channels. The uncertainties are usually dominated by
the stability of the sources and need to be evaluated for every individual case.

The voltage and current channels of all proposed variants can also be used indepen-
dently to calibrate power quality instruments [7–9]. A time-stamping system is used to
synchronise the measurements to UTC [10]. This is particularly useful in power quality
and phasor measurement unit applications, where the DUTs are also synchronised to UTC,
since, in practical applications, their input signals vary rapidly or the phasors at different
locations need to be compared. Therefore, such instruments need to time-stamp their
measurements to make measurements from different instruments comparable.

The calibration facilities are used to provide traceability to METAS’s meter testing and
certification system. The latter is also used at DC, for railway applications [11,12] and for
other applications for which a standard is currently in the last stages of development [13].
An application of quickly growing relevance is electric vehicle charging. To develop the
metrology framework for DC electricity grids, the proposal 20NRM03 DC grids has been
submitted in response to [14].

2. Measurement Set-Up and Characterisation

The basic set-up (Figure 1) is composed of calibrated reference instruments providing
traceability to the SI, a source providing the required voltages and currents, as well as the
DUT. The DUT is provided by the customer and changes frequently. It is part of the set-up,
but not of the reference system, which consists of the following components.

• One three-phase power calibrator Fluke 6105A/6135A or similar. In this set-up, the
essential property is the stability of the outputs and the operating range (≤21 A,
≤9 kHz).

• Three calibrated shunts Fluke A40B or similar.
• Six calibrated sampling voltmeters Keysight 3458A or similar with a trigger input and

aperture waveform output. The 3458A is well documented (e.g., [15]). It limits the
maximum voltage to ≈700 V.

• One UTC-synchronised six-channel time-to-digital converter (TDC), e.g., three NI PXI-
6683.

The system is easily scalable. It can be set up for any number of phases.
This system was presented at Smargimet 2020 [16]. For currents >21 A and voltages

>700 V, the system has since been extended.

2.1. Characterisation of the Shunts

Shunts are used to convert currents into voltages, which are sampled by the volt-
meters. The power calculation is directly affected by the properties of the shunts. For
the determination of power, the phase difference between voltage and current channels
is required, but not the absolute phase with respect to UTC. Since shunts are only used in
the current channels and there are no similar devices in the voltage channel, an absolute
calibration is required for the phase displacement of the shunt. The resistance of shunts
can be calibrated at DC with standard uncertainties of ≤0.2 µΩ/Ω. The AC-DC difference
and the phase displacement were determined using multiple shunts of different resistance
but similar geometry and hence similar parasitic inductance and capacitance [17]. The
resulting standard uncertainties are shown in Tables 1 and 2.
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Figure 1. Primary power standard.

Table 1. Uncertainty of shunt AC resistance.

Source of Uncertainty

Standard Uncertainty
in µΩ/Ω

at Frequency

50 Hz 400 Hz 1 kHz 9 kHz

DC resistance 0.2 0.2 0.2 0.2
AC-DC difference 0.01 0.1 0.2 2

Combined standard uncertainty 0.2 0.3 0.3 2

Table 2. Uncertainty of shunt phase.

Source of Uncertainty

Standard Uncertainty
in µrad

at Frequency

50 Hz 400 Hz 1 kHz 9 kHz

Phase 0.03 0.3 0.6 6

2.2. Voltmeter Triggering

Multiple solutions exist to trigger the sampling voltmeters. In principle, any source
that can provide a trigger signal to the voltmeters can be used. It is also possible to
operate the 3458As in a master–slave configuration where the master is triggered over the
communication interface and all slaves are triggered in a daisy chain using the EXT OUT
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output of one voltmeter as the trigger signal for the next. Each voltmeter adds a delay of
about 1 µs. This approach is convenient for a small number of phases. The EXT OUT output
of the last slave in the chain is not used. Nevertheless, it should be connected to the TRIG

IN input of the master, so that all EXT OUT outputs are loaded similarly.
Since the 3458A uses an easily accessible quartz oscillator as its internal clock reference,

it is fairly straightforward to modify it so that an external clock can be used. In this case,
the trigger source and all six voltmeters can run synchronously on the same clock. Another
solution is to extract the internal clock of a 3458A and use it in the trigger source [18]. In
this case, only one 3458A can be used since there cannot be more than one clock source; the
voltmeter needs to be multiplexed to the different channels. If the trigger source and the
voltmeter are synchronised in this way, the delay from the trigger edge leaving the trigger
source to the voltmeter acquiring a signal can be known with sub-nanosecond uncertainty;
the timing of each voltmeter sample can be predicted.

In general, the trigger source does not use the same internal clock as the voltmeter
that is triggered. As discussed in [10], this leads to a variable delay between the arrival
of the trigger signal at the TRIG IN input and the trigger signal being used in the timing
domain of the voltmeter. This delay can be as long as one internal clock period of the
voltmeter. It is frequently called ‘synchronisation jitter’, even though it could be predicted
with knowledge of the phase of the voltmeter’s internal clock and therefore is not, strictly
speaking, jitter.

The 3458A voltmeter can be configured to generate between 1 and 224 – 1 samples
for each trigger signal. It is convenient to trigger each sample individually. Unless the
clocks of the voltmeters and the trigger generator are locked, each sample is subject to
synchronisation jitter individually—the samples are not equally spaced. This can be a
problem for some algorithms e.g. FFT, which assume equally spaced samples. However,
the delay between corresponding samples of different channels does not change during
the measurement. Another solution is to use a single trigger event per channel for all
samples of a single measurement together. In this case, only one trigger event from an
external source is synchronised to each voltmeter’s clock domain. This affects all samples of
each channel equally, yielding an equal spacing between the samples. However, the delay
between the samples depends on each voltmeter’s internal clock frequency. Therefore, the
delay between corresponding samples of different channels increases as the measurement
progresses. In practice, additional knowledge about the input signal is always available—
the frequency of the fundamental is identical for all channels. Otherwise, the phase between
voltage and current would change with time in an uncontrolled way. Such a source could
not be used as a power source. Knowing that the frequency is identical in all channels, an
average timing can be calculated. Moreover, the EXT OUT signal can be configured to give
a pulse for each reading. The frequency of the EXT OUT signal is then equal to the sampling
frequency. The channel-dependent sampling frequency can be a problem for FFT-based
algorithms. The two sampling frequencies are generally not known. Since they are slightly
different, they cannot both be an integer multiple of the signal frequency at the same time.
Other algorithms which do not require synchronisation are more suitable [19–23].

Table 3 compares the different triggering modes.

Table 3. Comparison of voltmeter triggering modes.

One Trigger Internal Equally Predictable Signal
Event Clock Spaced Timing Frequency

per Sync. Samples Maintained

sample yes yes yes yes
measurement yes yes yes yes

sample no no no yes
measurement no yes no no
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2.3. Time-Stamping Voltmeter Samples

The trigger events at the TRIG IN input can be time-stamped easily at the trigger
generator. However, as discussed in the previous section, the delay between the trigger
event reaching the TRIG IN input and the analogue-to-digital converter (ADC) starting the
acquisition is subject to synchronisation jitter.

Another solution is to time-stamp the voltmeter’s aperture waveform at the EXT

OUT output. Since it originates in the clock domain of the voltmeter, it is not affected by
synchronisation jitter. The time-stamping accuracy is limited by the performance of the
time-stamping system. Even in FPGAs, TDCs can be implemented [24] with resolutions
≤20 ps; application-specific integrated circuits [25] can be avoided in most applications.
Commercial solutions with resolutions of ≤1 ns are readily available. If synchronisation
to UTC is required, time-stamping the aperture waveform at the EXT OUT output is the
most practical solution. The delay between the aperture waveform used by the ADC and
the aperture waveform reaching the EXT OUT output contributes to the time-stamping
uncertainty. This delay is not part of the specifications, but it cannot be larger than the delay
from TRIG IN to EXT OUT, which is easily accessible and about 1 µs. With some analysis of
the circuit, the path from TRIG IN input to the ADC can be separated from the path from the
ADC to the EXT OUT output. This analysis requires the injection of a variable external clock
and some temporary circuit modifications.

2.4. Latency of the Voltmeter’s Analogue Front-End

In practice, the dominant contribution to the time-stamping uncertainty is the delay
of the analogue front-end of the voltmeter. It is easy to apply the same signal to multiple
voltmeters and determine the relative differences with uncertainties of 3 ns (1 µrad at
50 Hz). As long as no synchronisation to external timing references is required, such as in
power measurements, this is sufficient.

If the system is to be synchronised to UTC, the latency needs to be determined in
absolute terms. Different methods for this have been proposed [26,27]. The uncertainty of
the latency is the dominant contribution to the absolute uncertainty of the timestamps. It
amounts to 250 ns.

Often, the required uncertainty for power is such that the latency difference of the
voltmeters’ analogue front-ends needs to be determined with small uncertainties, e.g.
≤3 ns (1 µrad at 50 Hz). For the absolute latency of the voltmeters’ analogue front-ends,
the requirement is much less stringent—though not less challenging. For example, assume
a total vector error uncertainty of 0.01 % is required to calibrate a class 0,1 PMU [28]. If this
uncertainty is due to equal contributions of amplitude and phase uncertainties, this leaves
70× 10–6 for the amplitude and 70 µrad for the phase. At 50 Hz, 70 µrad correspond to
220 ns.

2.5. Frequency Response of the Voltmeter

The 3458A’s ADC is an integrating ADC with a configurable aperture time taperture.
This leads to a low-pass behaviour. It can be corrected for easily since the effect on the
frequency response can be described analytically [29]. The frequency response of the
analogue front-end of the 3458A can be characterised by experimental calibration. It is
known to show a low-pass behaviour, too [15].

Once these well-known effects are corrected for, the uncertainty of the voltage mea-
surement in sampling mode is much smaller than the uncertainties specified for the ACV

mode. Apart from this advantage, the ACV mode is unsuitable for this application since it
gives only the RMS value, but no information on the phase, without which neither active
nor reactive power can be determined. Below 100 Hz, the uncertainty is ≤5 µV/V in the
DCV mode. Between 100 and 400 Hz, the uncertainty increases to 10 µV/V. Between 400
and 1000 Hz, the uncertainty reaches to 100 µV/V. The uncertainty in the DSDC mode is
150 µV/V from DC up to 9 kHz. Above 1 kHz, the uncertainty in the DCV mode exceeds



Energies 2021, 14, 2203 6 of 15

that of the DSDC mode. Therefore, the DCV mode is used up to 1 kHz and the DSDC mode
above 1 kHz.

These uncertainties were validated in a comparison of a 3458A with a Fluke 5790A
voltmeter. The Fluke 5790A uses a solid-state thermal RMS sensor and is known to have a
flat frequency response above 100 Hz.

3. Uncertainty Budget of the Basic System

Tables 4 and 5 show the uncertainty budget of the basic system for the apparent
power

∣∣S∣∣ and the displacement angle ϕ. Since the dominating uncertainty contributions
are correlated, both the absolute uncertainties and the values of the apparent, active and
reactive power of all phases are to be added arithmetically. Their ratios, the relative
uncertainties, are independent of the number of phases.

Table 4. Uncertainty of the apparent power.

Source of Uncertainty

Standard Uncertainty
in 10–6

at Frequency

50 Hz 400 Hz 1 kHz 9 kHz

Voltmeter (voltage channel) 5 10 100 150
Voltmeter (current channel) 5 10 100 150

Shunt 0.2 0.3 0.3 2
Spread of the samples 1 2 2 2

Combined standard uncertainty 7 14 142 212

Expanded uncertainty (95 %) 15 30 300 500

Table 5. Uncertainty of the displacement angle without a custom-designed Wagner earth circuit.

Source of Uncertainty

Standard Uncertainty
in µrad

at Frequency

50 Hz 400 Hz 1 kHz 9 kHz

Phase displacement of shunt 0.03 0.3 0.6 6
Phase difference of voltmeters 1 2 5 45

Common mode voltage 5 8 100 900
Spread of the samples 1 2 2 2

Combined standard uncertainty 6 9 100 900

Expanded uncertainty (95 %) 11 17 200 1800

The voltmeters for voltage and current are used in different ranges with different
frequency responses and their calibration uses different set-ups. Therefore, their uncer-
tainties can be considered uncorrelated. In the current circuit, the shunt of the reference
and the current circuit of the DUT are connected in series. The link between the shunt of
the reference and the current circuit of the DUT should be connected to the ground. If, for
instance, the DUT were grounded at the link to the current source, the shunt would be
exposed to a common mode voltage. This would cause leakage currents that are different
from those characterised in the calibration of the shunt. This leakage current is mainly
capacitive and affects the phase measurement strongly. However, a low impedance ground
connection of the link between shunt of the reference and the current circuit of the DUT

would constitute a conductive leakage path, making the current measured by the reference
different from the current measured by the DUT. The solution to this problem is a virtual
ground using a Wagner earth circuit [30]. In some applications, namely with some DUTs,
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this is not possible due to internal grounding of the current path. Table 5 shows the uncer-
tainty for this case, since we are not aware of any suitable commercial off-the-shelf Wagner
earth circuit. Connecting the link to a virtual ground using a Wagner earth circuit would
remove this dominant contribution.

For each frequency component of an AC signal, the uncertainties of the active power P
and the reactive power Q are a function of the displacement angle ϕ and the uncertainty of
the apparent power

∣∣S∣∣. It is convenient to normalise these uncertainties to the apparent
power

∣∣S∣∣, which yields finite values for all ϕ. For u(P)/P and u(Q)/Q, this is not the case.
This is no surprise since P = 0 for ϕ = ±90° and Q = 0 for ϕ = 90°± 90°. In (2) and (5), this
property is shown in the tan(ϕ) terms.

P =
∣∣S∣∣ cos(ϕ) (1)

u(P)
P

=

√√√√(u
(∣∣S∣∣)∣∣S∣∣

)2

+
(
tan(ϕ) u

(
ϕ
))2 (2)

u(P)∣∣S∣∣ =

√√√√(cos(ϕ)
u
(∣∣S∣∣)∣∣S∣∣

)2

+
(
sin(ϕ) u

(
ϕ
))2 (3)

Q =
∣∣S∣∣ sin(ϕ) (4)

u(Q)
Q

=

√√√√(u
(∣∣S∣∣)∣∣S∣∣

)2

+
(

1
tan(ϕ)

u
(

ϕ
))2

(5)

u(Q)∣∣S∣∣ =

√√√√(sin(ϕ)
u
(∣∣S∣∣)∣∣S∣∣

)2

+
(
cos(ϕ) u

(
ϕ
))2 (6)

If the uncertainties u(|S|)
|S| and u

(
ϕ
)

are equal, the displacement angle dependency
vanishes and all power uncertainties are equal: u

(∣∣S∣∣) = u(P) = u(Q). If the uncertain-
ties u(|S|)

|S| and u
(

ϕ
)

are not equal, it is convenient to remove the displacement angle

dependency by using max
(

u(|S|)
|S| ; u

(
ϕ
))

in (3) and (6), as shown in (7) and (8) as well as
Table 6.

u(P)∣∣S∣∣ ≤
√√√√(cos2(ϕ) + sin2(ϕ)

)(
max

(
u
(∣∣S∣∣)∣∣S∣∣ ; u

(
ϕ
)))2

= max

(
u
(∣∣S∣∣)∣∣S∣∣ ; u

(
ϕ
))

(7)

u(Q)∣∣S∣∣ ≤
√√√√(sin2(ϕ) + cos2(ϕ)

)(
max

(
u
(∣∣S∣∣)∣∣S∣∣ ; u

(
ϕ
)))2

= max

(
u
(∣∣S∣∣)∣∣S∣∣ ; u

(
ϕ
))

(8)

Table 6. Uncertainty of the active and reactive power.

Source of Uncertainty

Standard Uncertainty
in 10–6

at Frequency

50 Hz 400 Hz 1 kHz 9 kHz

max
(

u(|S|)
|S| ; u

(
ϕ
))

= u(|S|)
|S|

u(|S|)
|S|

u(|S|)
|S| u

(
ϕ
)

Combined standard uncertainty 7 14 142 900

Expanded uncertainty (95 %) 15 30 300 1800

Active energy is defined as “electrical energy transformable into some other form of
energy” [31,32]. Therefore, at DC, there is active energy with P =

∣∣S∣∣ and u(P) = u
(∣∣S∣∣);
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there is no reactive energy at DC. The uncertainties u(P) = u
(∣∣S∣∣) at DC are equal to those

shown for 50 Hz.

4. Comparison

This system was compared with PTB, the German national metrology institute, using
a Radian Research RD-22 transfer standard at 52.63 Hz. This frequency was chosen such
that the frequency of the power grid and the frequency of voltage and current are centred
in different FFT bins since PTB’s system uses an FFT. Since the RD-22 is a single-phase
device, all three phases of the primary power standard were compared individually. This
is a valid approach since all three phases of the primary power standard contribute to the
three-phase power independently without impacting the other phases.

As an example, Tables 7 and 8 show the differences between the measurements at
METAS and PTB for one phase at 120 V and 5 A as well as 240 V and 5 A.

Table 7. Comparison results (120 V and 5 A).

Settings Difference

Phase Voltage Current Active Reactive Apparent
Power Power Power

ϕ

°
∆U/U
µV/V

∆I/I
µA/A

∆P/
∣∣S∣∣

µW/VA
∆Q/

∣∣S∣∣
µvar/VA

∆
∣∣S∣∣/∣∣S∣∣

µVA/VA

180 0 –2 3 0 –2
150 1 –1 0 –1 –1
120 0 –1 0 –1 –1
90 0 0 0 –1 –1
60 0 0 –1 1 1
30 2 0 0 2 1
0 1 1 2 –1 2

–30 1 2 4 –1 3
–60 2 2 1 –4 4
–90 1 1 1 –3 3

–120 1 1 –1 –2 1
–150 -1 1 –1 0 1

While the stability of the phase difference across different phases could be shown by
calibrating the RD-22 with the voltage from one phase and the current from another phase,
it is much simpler to adjust the phase of the measuring system. All voltage measurement
channels are connected to one voltage channel of the source. The phase difference is zero
by definition. Any non-zero phase difference measurement is due to imperfections in the
measurement channels and can be safely adjusted. Afterwards, all source channels are
connected to one measurement channel each. The measurements show the differences
between the channels. The same procedure is repeated for the current measurement
channels. Care needs to be taken to avoid common mode effects. The phase stability
of the Fluke 6105A across different channels is below 2× 10–6 = 2 µrad ≈ 0.0001° at
power frequencies. The resulting unbalance is negligible in usual power and power
quality calibrations.
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Table 8. Comparison results (240 V and 5 A).

Settings Difference

Phase Voltage Current Active Reactive Apparent
Power Power Power

ϕ

°
∆U/U
µV/V

∆I/I
µA/A

∆P/
∣∣S∣∣

µW/VA
∆Q/

∣∣S∣∣
µvar/VA

∆
∣∣S∣∣/∣∣S∣∣

µVA/VA

180 2 1 –2 –2 2
150 2 2 –4 –2 4
120 2 1 –4 1 2
90 1 1 –4 2 2
60 2 0 –1 3 2
30 2 1 2 3 3
0 2 2 3 2 2

–30 1 1 3 0 3
–60 3 2 4 –2 4
–90 1 2 3 –2 2

–120 2 2 1 –6 5
–150 2 1 0 –4 3

5. Extension Beyond 21 A and 700 V
5.1. Extension Using Amplifiers

For high-accuracy energy billing measurements, transformer-operated electrical en-
ergy meters are commonly used. Their inputs are connected to instrument transformers.
The energy meter and its instrument transformers are usually calibrated independently.
The interface is most commonly designed for a rated current of 5 A and a rated voltage
of 100 V or 100 V/

√
3. The energy meter is calibrated using a power reference calibrated

using the system discussed above. The instrument transformers are calibrated using a
reference transformer and a comparator. If the comparator is a traditional bridge, it is
calibrated using an error generator [33]. If the comparator is not a traditional bridge, but a
sampling-based system, the calibrator can be similar to the system discussed above [34].

However, direct connected meters are usually designed for currents exceeding the max-
imum current of the Fluke 6105A and thus the specifications of the system discussed above.

For the generation of higher currents, transconductance amplifiers (Fluke 52120A) can
be connected to the Fluke 6105A. Together with matching current transformers using, e.g.,
the fluxgate technology, the three-phase system was extended to 120 A for AC or 100 A for
DC. Putting the three amplifiers in parallel, the current can be increased three-fold for a
single-phase system. Conveniently, the current transformers provide galvanic isolation
between their primary and secondary circuits. Therefore, the shunt at its secondary and
the sampling voltmeter in the current channel can be connected to ground directly, thereby
removing the common mode voltage without the need for a Wagner earth circuit. The
voltage drop across the primary of the current transformer leads to a common mode voltage
at the current input of the DUT. However, if a single-turn through-hole current transformer
is used, this voltage drop is usually negligible.

Using an appropriate, calibrated voltage divider in addition to the 3458A multimeters,
the voltage maximum was extended to 1000 V, which is the limit of the Fluke 6105A.

The uncertainty budget for the apparent power
∣∣S∣∣ and the displacement angle ϕ of

the extended system is shown in Tables 9 and 10.
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Table 9. Extended system: Uncertainty of the apparent power.

Source of Uncertainty

Standard Uncertainty
in 10–6

at Frequency

50 Hz 400 Hz 1 kHz 9 kHz

Voltmeter (voltage channel) 5 10 100 150
Voltage divider 5 5 10 100

Voltmeter (current channel) 5 10 100 150
Current transformer 5 5 10 100

Shunt 0.2 0.3 0.3 2
Spread of the samples 1 2 2 2

Combined standard uncertainty 10 16 142 255

Expanded uncertainty (95 %) 20 32 290 510

Table 10. Extended system: Uncertainty of the displacement angle.

Source of Uncertainty

Standard Uncertainty
in µrad

at Frequency

50 Hz 400 Hz 1 kHz 9 kHz

Phase displacement of voltage divider 5 5 10 100
Phase displacement of current transformer 5 5 10 100

Phase displacement of shunt 0.03 0.3 0.6 6
Phase difference of voltmeters 1 2 5 45

Spread of the samples 1 2 2 2

Combined standard uncertainty 8 8 16 150

Expanded uncertainty (95 %) 15 16 31 300

Especially for electric vehicle charging stations, direct connected meters for even
higher currents and voltages are used. Depending on the design of the charging stations,
it may not be possible to calibrate the electricity meter individually. When a DC charging
station must be calibrated as a whole, the specifications of the system presented in this paper
are usually exceeded. However, the principle of the extension can be applied regardless; all
that is required is a suitable current source, a suitable voltage source, calibrated instrument
transformers and the sampling system, which is connected to the secondaries of the
instrument transformers.

5.2. Extension Using Amplifiers and Step-Up Transformers

Instrument transformers are calibrated at high voltages or currents on the primary
side of the transformers. Calibration systems are usually composed of an amplifier with
a low output level (≤500 A, ≤270 V) and an adaptation transformer. By combining such
instrument transformer calibration systems with the power standard discussed above,
a power standard for use at high current and high voltage can be designed, albeit for
a limited bandwidth (Figure 2). This is relevant since some energy meters and power
quality analysers include, e.g., a Rogowski coil [35] that cannot or shall not be calibrated
separately. For instance, electricity meters designed for operation with low power instru-
ment transformers may be tested for compliance with IEC 62052-11 [36] only when tested
together as directly connected meters. While such a limitation is not present in the relevant
directive [37], the next edition of the harmonised standard EN 50470-1 is likely to introduce
an explicit statement of the same nature.
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Figure 2. Primary power standard for high currents and high voltages.

In a power calibration system, it is essential that the frequencies of the voltage and the
current are identical. In an instrument transformer calibration system, there is only one
primary quantity, voltage or current, and the secondary quantities are derived from the
primary. In the latter application, it is not necessary and often not possible to synchronise
the source to an external reference. If such a source is to be used as part of a power
calibration system, synchronisation is mandatory. Otherwise, active and reactive power
would be ill-defined and a stable phase relation could not be achieved.

When instrument transformers and power meters are calibrated separately, the power
measured by the power meter is multiplied with the transformation ratios of the instrument
transformers; the uncertainties are uncorrelated and added geometrically. The uncertainties
of the transformer calibrations are usually very small even if the high voltage source
and, even more so, the high current source, drift with time. The reason is that both the
reference transformer and the DUT transformer are subject to the same variation and their
transformation ratio is, in first approximation, constant. The comparator is designed
to measure the secondary of the reference transformer and the secondary of the DUT

transformer simultaneously. As a result, in a recent current transformer comparison, even
institutes reporting uncertainties below 10 µA/A and 10 µrad could neglect the influence
of the stability of the source on the results [38,39].

For power calibrations, this principle does not apply. The reference, consisting of
transformers and the sampling system described above, measures the power at one point
in time. Independently, the DUT measures the power at a close, but different, point in time
(Figure 3). If the sources generated a constant current and a constant voltage, the power
to be measured would not change with time and the synchronisation would not matter.
However, especially the drift of the high current source is usually not negligible as the



Energies 2021, 14, 2203 12 of 15

impedance of the circuit that is connected to this source changes as the temperature of
the conductors changes. Both the reference and the DUT are exposed to this change and
their values will show this. For example, if one reading is acquired from both at regular
intervals and the readings change monotonously, this is most likely due to the drift of
the source. Often, commercial power meters are not designed for synchronisation with
an external clock. Therefore, a timing uncertainty that depends on the model of the DUT

needs to be taken into account. Often, 1 s is a suitable assumption. Usually, it is convenient
to wait for 60 s after each change of current and voltage, thereby removing the part of
the fastest drift. Then, measurements are taken at regular intervals, e.g., every 10 s. The
drift is observed using the readings of the reference. Usually, it is sufficient to linearise
the curve shown in Figure 3 between two subsequent points and to use the resulting
slope for the determination of the uncertainty contribution of the second reading. Given
that the absolute value of the slope decreases as the conductor temperature approaches
an equilibrium asymptotically, this overestimates the uncertainty slightly. For instance,
assume readings are taken every 10 s, between the first and second reading, a drift of 0.1 %
is observed, and the timing uncertainty is 1 s. The resulting contribution to the power
uncertainty is 1 s× 0.01 %/s = 0.01 %. Since no uncertainty estimation is available for the
first reading, this reading is discarded. If the uncertainty decreases significantly as the
measurement progresses, it is often convenient to allow for a longer settling time, i.e., >60 s.
If the uncertainty decreases only slightly, the uncertainty of the second reading can be used
for all subsequent readings, simplifying the calculation.

While this contribution dominates the uncertainty budget by far, it is still low enough
for many applications. For instance, IEC 62052-11 [36], a standard used for electricity
meters, defines the decision rule. For all accuracy classes, the uncertainty stated above
allows for the principle of simple acceptance, also known as shared risk, to be used [40].

For power quality analysers, especially class A power quality analysers [41], the situ-
ation is different since those instruments are designed to be synchonised. Therefore, the
timing uncertainty of their measurement is much smaller and so is the uncertainty contri-
bution of the drift. For a class A power quality analyser, the synchronisation uncertainty
is one cycle at rated frequency, i.e., 20 ms at 50 Hz and 16.7 ms at 60 Hz. Assuming, as
above, a drift of 0.01 %/s yields an uncertainty contribution of 0.0002 % = 2× 10–6 without
any change of the sources and the power standard. In this case, the uncertainty budget
needs to be adapted to account for this uncertainty contribution as well as the uncertainty
contribution of the additional current or voltage transformer, which is shown in their
respective calibration certificate, while the other contributions discussed in Section 5.1
remain dominant.

For PMUs [42], the specifications for amplitude and phase are combined. The relevant
standard, IEC/IEEE 60255-118-1, defines a total vector error which is to be at most 1%. If the
PMU’s amplitude measurement were perfect, this would allow for a synchronisation error
of 31 µs at 50 Hz and 26 µs at 60 Hz, corresponding to a phase error of 1 crad. Therefore, the
contribution is completely negligible for PMUs; for it to reach even the very low value of the
class A power quality analyser’s case, 2× 10–6, the source would need to drift by as much
as 6.5%/s at 50 Hz and 7.7 %/s at 60 Hz—such an unstable source would be of no practical
use. For the calibration of PMUs, the uncertainty budget needs to be adapted to account
for the uncertainty contribution of the additional current or voltage transformer, which is
shown in their respective calibration certificate, while the other contributions discussed
in Section 5.1 remain dominant. The contribution due to the stability of the source can be
neglected as long as the reference is synchronised to the same time source as the DUT.
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Figure 3. Qualitative illustration: Short-term stability of the measurand and the importance of synchronisation of reference
and DUT. The quantitative impact strongly depends on the particular set-up and is very magnitude dependent. It needs to
be evaluated for every individual case. While the principle applies to any measurand, the current is particularly liable to
time dependency in this application, while the voltage is much more stable.

6. Conclusions

In this paper, a primary power standard using only commercial off-the-shelf compo-
nents is presented. The system uses two sampling voltmeters and one shunt per phase. It
is easily scalable to any number of phases. Since it does not use inductive transformers, it
operates also at DC. The maximum frequency, 9 kHz, is limited by the source.

At DC and power frequencies, the uncertainty is as low as 15 µW/VA. Without a
custom-designed Wagner earth circuit, it increases to 1.8 mW/VA at 9 kHz.

The performance of the system was confirmed at power frequencies by a comparison
with PTB, showing an agreement of the active power measurements of the two systems
within 4 µW/VA.

For applications requiring currents >21 A or voltages >700 V, an extension is presented
along with its uncertainty budget showing power uncertainties of 20 µW/VA at power
frequencies, increasing to 510 µW/VA at 9 kHz. When used together with sources com-
monly used for instrument transformer calibration, currents >360 A or voltages >1000 V
can be reached. In this case, the bandwidth is limited and the uncertainties are dominated
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by the stability of the sources unless the DUT is specifically designed to be synchronised
externally.
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