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1 Introduction 

When spectral data sets are used to determine spectrally integrated values (e.g., for photometry), the 

correlations between individual spectral measurements become important because, unlike intrinsic 

correlation (e.g., due to filters), these extrinsic correlations are not fixed and change depending on 

boundary conditions and on the setup used. 

This guideline provides information on how to use correlation data to improve traceability of measured 

data. The guideline also includes information regarding boundary conditions with respect to Monte Carlo 

simulations to determine uncertainty. Publications JCGM 100 [1], JCGM 101 [2], and CIE 198 series [3], 

[4], [5], provide useful information and tools for uncertainty evaluation. 

2 Terminology 

There are many terms in use which describe various aspects regarding the quality of a measurement. 

In the following, the correct use of terms like “accuracy”, “error”, “tolerance”, “reproducibility”, 

“repeatability” and “uncertainty” are explained, based on the documents JCGM 200:2012 “The 

International vocabulary of metrology – Basic and general concepts and associated terms” (VIM) 3rd 

edition” [6], and CIE TN 009:2019 [7]. 

 

 

 

Accuracy 

The term accuracy describes the “closeness of agreement between a measured quantity value and 
a true quantity value of a measurand”. In this concept, "accuracy" is the description of a general 
assessment and rating on the scale from very good to very poor. It is not a quantity and cannot be 
assigned a numerical quantity value 
Example The accuracy of the measurement is very high  

Precision 

Precision describes the “ closeness of agreement between indications or measured quantity values 
obtained by replicate measurements on the same or similar objects under specified conditions”. In 
metrology it is used to define repeatability and reproducibility and is numerically expressed by 
standard deviations or variances. It has to be distinguished from the term accuracy. 
Example The reading has a precision relative standard deviation of σ = 0.01  

Repeatability 

Measurement repeatability is the “measurement precision under a set of repeatability conditions of 
measurements”. The conditions include  the same measurement procedure, same operators, same 
measuring system, same operating conditions and same location, and replicate measurements on 
the same or similar objects over a short period of time 
Example The repeatability standard deviation is within 0.3 % of the measured value 
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Reproducibility 

Measurement reproducibility is the “measurement precision under reproducibility conditions of 
measurement”. The conditions include different locations, operators, measuring systems, and 
replicate measurements on the same or similar objects. For instance measurement reproducibility is 
the closeness of agreement of measurements taken at different measurement setup using the same 
artefact (reproducibility artefact) or using comparable artefact at the same measurement setup 
(reproducibility of the setup). 
Example The reproducibility standard deviation is within 0.2 % of the measured value 

Error 

A measurement error is the “measured quantity value minus a reference quantity value”. This concept 
assumes that an error can be expressed by an absolute value without uncertainty. However, an error 
is neither a mistake nor an uncertainty as it typically occurs not by intention and the true value of a 
measurement is typically not known.  
Example Due to the offset not yet taken into account, the length measurement still has an error 

of 6 mm. 

Uncertainty 

Uncertainty is a “non-negative parameter to characterize the dispersion of the quantity values 
assigned to a measurand, based on the information used”. It includes all components that influence 
the measurement as a whole, i.e. systematic effects, statistical components and others. Hence, 
uncertainty is never attributed to a measurement device, an artefact or a measurement setup per se.  
It is based on a confidence level of a resulting probability distribution. 
Example The measurement of the luminous flux of the lamp had an associated expanded 

uncertainty of U = 0,83 % with k = 2,15 according to a confidence level of 95 %.  

Tolerance 

A tolerance interval is an interval of permissible values, i.e. it describes a zone of values which are 
acceptable for a particular purpose. Since each measured value has an associated uncertainty, it 
depends on the risk management whether the best estimate of the acceptable measured values 
according to their uncertainty may be inside or outside the tolerance interval. 
Example Permissible temperature values within the temperature limits T = 25,0 °C ± 1,2 °C define 

the temperature tolerance interval: [23,8; 26,2] °C. 

Correlation 

Correlations in the metrological sense are mutual relationships between two or more measured 
quantities. Two quantities are correlated if a common third quantity influences their respective values. 
Example A fluctuation of the ambient temperature around a mean value can lead to a dependent 

fluctuation of the measured value of the spectroradiometer, which measures the 
illuminance by an LED source, as well as to a fluctuation of the luminous flux of the 
LED source to be measured itself. 
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Intrinsic Correlation 

An intrinsic correlation is a correlation that is attributed to a specified input quantity that exists by itself 
and does not depend on the measurement conditions or set-up. 
Example The multivariate chromaticity coordinates (𝑥, 𝑦) are intrinsically correlated by 

overlapping tristimulus functions 𝑥̅(𝜆), 𝑦ത(𝜆)  and 𝑧̅(𝜆). 

Extrinsic Correlation 

An extrinsic correlation is a correlation that depends on outside parameters or measurement set-up. 

Example When calibrating the spectral irradiance of a detector, the spectral bandwidth and the 
associated slit function of the monochromator must be taken into account to evaluate 
the uncertainty. This quantity contributes to correlations with adjacent wavelengths 
depending on the settings. 

Multivariate 

When performing uncertainty evaluation using Monte Carlo technique, a probability distribution is 
termed univariate when it relates to a single (scalar) random variable, and multivariate when it relates 
to a vector of random variables. A multivariate probability distribution is also described as a joint 
distribution. 
Example Uncertainty of illuminance measurement performed with an illuminance meter 

calibrated in spectral responsivity includes the uncertainty of the illuminance meter 
calibration data that are correlated. A multivariate Gaussian distribution should be 
assigned to the spectral data.  
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3 Spectral irradiance responsivity of detector 

At the National Metrology Institute (NMI) level, the traceability chain for calibrating the spectral irradiance 

responsivity of a reference detector is commonly linked to the cryogenic radiometer through three 

distinct routes: 

- Primary Route directly to Cryogenic Radiometer: This route establishes a direct link between 

the reference detector and the cryogenic radiometer. The cryogenic radiometer is a primary 

measurement standard used for maintaining the accuracy and traceability of spectral irradiance 

measurements. 

- Secondary Route through Reference Trap Detectors: In this route, calibration is achieved 

using reference trap detectors. These detectors are calibrated at another NMI with primary route 

capability, primarily based on detector characteristics. This secondary route offers an additional 

layer of traceability. 

- Secondary Route through Lamp Standards: Here, calibration is based on lamp standards 

that are calibrated against a black body at an NMI. The black body's temperature is determined 

using filtered detectors calibrated against a cryogenic radiometer. This source-based approach 

provides a different path to traceability. 

Both the cryogenic radiometer and trap detectors are commonly used in radiant power mode. This mode 

involves the light beam not completely filling the entrance window of the detector, allowing for accurate 

measurement of the radiant power of the beam. In the case of measurements against lamp standards, 

the detector is used in irradiance mode. In this mode, the light beam overfills the entrance window of 

the detector. 

To effectively calibrate the irradiance responsivity of a filtered radiometer, such as a photometer, two 

technical requirements must be met: 

- Determination of Spectral Irradiance: The spectral irradiance at the reference plane of the 

reference detector needs to be determined. This is achieved by limiting the effective area of the 

entrance window at the reference plane using an aperture with a known area. This transition 

from radiant power mode to irradiance mode is crucial for accurate calibration. 

- Distance and Uniformity Considerations: The Device Under Test (DUT) must be positioned 

at the same distance from the source as the reference detector, with respect to its reference 

plane. This alignment ensures comparability. If the aperture of the DUT differs from that of the 

reference detector, factors related to the uniformity of the radiation field need to be taken into 

account. 
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This section discusses the calibration routes and technical requirements involved in establishing the 

spectral irradiance responsivity of detectors, ensuring accurate and traceable measurements across 

different methodologies. 

3.1 Calibration facility 

A robust calibration facility is essential to achieve accurate results. This facility needs to be capable of 

generating a uniform monochromatic beam precisely in the reference plane of the Device Under Test 

(DUT). The schematic representation of the monochromatic beam generation aspect of the calibration 

facility is illustrated in Figure 1. This section also covers the components involved, including a 

monochromator and optics for beam shaping. 

 

 

 

 

 

 

 

Figure 1: Schematic of a spectral irradiance responsivity calibration facility 

The monochromator can be constructed using either of the following equipments 

- Tunable Laser: In the modern context, tunable lasers covering a range from UV to Vis to IR 

are readily available in the market. 

- Wavelength Dispersive Device and Broadband Lamp: An alternative approach involves 

coupling a wavelength dispersive device with a broadband lamp. To minimize stray light 

interference, employing a double-monochromator setup is recommended. 

To ensure accurate comparison, a mechanical apparatus should be designed for the reference plane. 

This apparatus facilitates the alternating placement of the reference detector and the Device Under Test 

(DUT) in an identical position on the monochromatic beam. 

Examples of calibration facilities at PTB (Physikalisch-Technische Bundesanstalt), utilizing a laser-

based set-up for irradiance responsivity, and at LNE-CNAM (Laboratoire national de métrologie et 

d'essais - Conservatoire national des arts et métiers), employing a monochromator-based approach for 

power responsivity, are depicted in Figure 2 and Figure 3 respectively. 

Monochromator Optics 

Reference plane 

DUT 
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Figure 2: PTB Calibration Facility (Laser-Based for Irradiance Responsivity) 

 
Figure 3: LNE-CNAM Calibration Facility (Monochromator-Based for Power Responsivity) 

This section underscores the significance of an appropriately designed calibration facility capable of 

generating a uniform monochromatic beam for accurate and traceable measurements. It also shows 

real-world examples of such facilities at PTB and LNE-CNAM. 

 

3.2 Calibration procedure 

The Device Under Test (DUT) is affixed to a translational stage to facilitate precise positioning. To 

ensure the detector surface is perpendicular to the optical axis of the setup, a laser beam placed along 

the optical axis is used for alignment purposes. 

Wavelength Interval and Regular Calibrations 

For determining irradiance or power responsivity within a specific wavelength range, using a consistent 

wavelength grid for setting the wavelengths is advantageous. In the case of regular calibrations, such 
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as unfiltered Si-detectors, a typical interval of 5 nm between wavelengths is used. However, for detectors 

with varied responsivity slopes, such as filtered detectors, and considering the monochromator system's 

bandwidth, different wavelength step settings might be necessary. 

Reference Trap Detector Calibration 

A calibrated reference trap detector is chosen and then positioned and aligned in the same manner as 

the DUT, using the translational stage. An aperture with a calibrated area, smaller than the effective 

area of the trap detector, is mounted onto the reference detector. 

Measurement Principle and Substitution Technique 

The measurement principle is based on the substitution technique, involving the use of a monochromatic 

beam for irradiating the reference detector and the DUT. This technique facilitates accurate comparison. 

Incorporating a Monitor Detector 

To correct for potential variations in beam power during measurements between the reference detector 

and the DUT, a monitor detector can be introduced into the setup.  

This section emphasizes the intricacies of mounting, aligning, and calibrating the DUT. It also delves 

into the significance of wavelength intervals, the substitution technique, and the potential integration of 

a monitor detector to maintain measurement accuracy. 

 

 

3.3 Measurement model 

The measurement [8] is based on a substitutional method for transferring the known power responsivity 

of the reference detector to the irradiance responsivity of the DUT by adding an aperture with calibrated 

area to the reference detector. The resulting measurement equation is as follows: 

𝑠(𝜆) =
௎ವೆ೅

௎ೝ೐೑
⋅

ோೝ೐೑

ோವೆ೅
⋅

ெ௢௡ೝ೐೑

ெ௢௡ವೆ೅
𝑠ః,௥௘௙⋅(𝜆) ⋅ 𝐴௥௘௙ ⋅ 𝑐௪௟(𝜆) ⋅ 𝑐௕௪(𝜆) ⋅ 𝑐௣௢௟(𝜆) ⋅ 𝑐௨௡௜௙(𝜆) ⋅ 𝑐ௗ௜௦௧  1 

where 

 s(𝜆)  is the spectral irradiance responsivity of the DUT 

 𝑈ୈ୙୘/୰ୣ୤ are the voltage readings when measuring either the DUT or reference detector 

𝑀𝑜𝑛୰ୣ୤/ୈ୙୘ are the simultaneous voltage readings of the monitor detector of 

the DUT or reference signal 

 𝑅୰ୣ୤/ୈ୙୘ are the calibrated resistances of the used photocurrent amplifier (gain setting) 

 𝑠ః,୰ୣ୤(𝜆) is the calibrated spectral power responsivity of the reference detector 
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 𝐴୰ୣ୤  is the calibrated area of the aperture in front of the reference detector 

 𝑐୵୪(𝜆)  is the correction factor for the wavelength measurement 

 𝑐ୠ୵(𝜆) is the correction factor for bandwidth effects 

 𝑐୮୭୪(𝜆) is the correction factor for polarization dependency of the DUT 

 𝑐୳୬୧୤(𝜆) is the correction factor for non uniformity of DUT, reference detector and the 
used radiation 

 𝑐ୢ୧ୱ୲  is the correction factor for distance offsets between DUT and reference 

 

3.4 Measurement uncertainty and correlation calculation 

3.4.1 Uncertainty components 

According to the measurement equation the uncertainty components are the following: 

Repeatability of the voltage readings of DUT. 

Voltage readings (signal – dark signal) is the average of n measurements from which the standard 

deviation is determined. In our case, the uncertainty of the voltage reading is itself a combined 

uncertainty of the uncorrelated uncertainties of the readings and the calibrated feedback resistor. 

Repeatability of the voltage readings of reference detector 

Voltage readings (signal – dark signal) is the average of n measurements from which the standard 

deviation is determined. In our case, the uncertainty of the voltage reading is itself a combined 

uncertainty of the uncorrelated uncertainties of the readings and the calibrated feedback resistor. 

Repeatability of the monitor detector readings 

Voltage readings (signal – dark signal) is the average of n measurements from which the standard 

deviation is determined. 

The voltage readings of the DUT and reference detector are fully correlated with the voltage 

readings of the respective monitor detectors. Therefore, in Monte Carlo simulations, one has to 

use the same set of randomly drawn numbers for simulation of the monitors as for the DUT and 

reference detector signals, respectively for a given wavelength. 

Calibration of the aperture area of the reference detector (correlation) 

This uncertainty uApertureArea is obtained from the calibration certificate of the aperture. The spectral data 

of the DUT are fully correlated. 

Therefore, in Monte Carlo simulations, one has to use the same set of randomly drawn numbers for 

simulation of the aperture area for every wavelength if the spectral responsivity of the detector is to be 

specified for more than one wavelength. 

Calibration of the photocurrent amplifier, i.e. 𝑹𝐫𝐞𝐟, for reference detector (correlation) 
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This uncertainty uAmp.Ref is obtained from the calibration certificate of the current/voltage amplifier or 

feedback resistor 𝑅୰ୣ୤ associated to the reference detector. This uncertainty depends on the signal level. 

All measurements using the same amplifier setting are fully correlated with respect to systematic 

uncertainty components of the amplification setting. 

In Monte Carlo simulations, one has to use the same randomly drawn numbers for simulation of the 

photocurrent amplification for equal amplifier or feedback resistor settings, respectively. The same set 

of random numbers must also be used for every wavelength if the spectral responsivity of the detector 

is to be specified for more than one wavelength. 

Calibration of the photocurrent amplifier, i.e. 𝑹𝐃𝐔𝐓, for DUT (correlation) 

This uncertainty uAmp.DUT is obtained from the calibration certificate of the current/voltage amplifier or 

feedback resistor 𝑅୰ୣ୤ associated to the DUT. This uncertainty depends on the signal level. All 

measurements using the same amplifier setting are fully correlated with respect to systematic 

uncertainty components of the amplification setting. 

In Monte Carlo simulations, one has to use the same randomly drawn numbers for simulation of the 

photocurrent amplification for equal amplifier or feedback resistor settings, respectively. The same set 

of random numbers must also be used for every wavelength if the spectral responsivity of the detector 

is to be specified for more than one wavelength. 

 

Calibration of the spectral irradiance responsivity of the reference detector (correlation) 

This uncertainty uRef.Cal is obtained from the calibration certificate of the reference detector. The 

calibration certificate may provide also the correlation matrix or covariance matrix for a range of 

wavelength to be covered. 

Also if no correlation matrix is provided, it must be expected that the spectral data are correlated. The 

upper limit of the influence of partial correlation can be estimated using the base functions approach 

described in [9]. 

Uncertainty due to wavelength measurement uncertainty (correlation) 

An uncertainty u(λ)  in the wavelength measurement implies a measurement of the responsivity at a 

wavelength λ0+u(λ). 

Taking into account the first order Taylor expansion of s(λ) at λ0, 

𝑠(𝜆) = 𝑠(𝜆଴) + 𝑠ᇱ(𝜆଴) (𝜆 − 𝜆଴) + 𝑜൫𝜆 − 𝜆଴)൯ 2 

the spectral responsivity at the wavelength λ0+ u(λ) is: 

𝑠൫𝜆଴ + 𝑢(𝜆)൯ = 𝑠(𝜆଴) + 𝑠ᇱ(𝜆଴) 𝑢(𝜆) 3 

The error Err in the measured spectral responsivity s(λ0) is: 

𝐸௥௥ =
௦(ఒబ)ି௦൫ఒబା௨(ఒ)൯

௦(ఒబ)
= − 

௦ᇲ(ఒబ)

௦(ఒబ)
 𝑢(𝜆) 4 
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The correction factor Cwl,DUT on the measured signal UDUT of the DUT is: 

𝐶௪௟,஽௎் = 1 −  
௦ᇲ(ఒబ)

௦(ఒబ)
 𝑢(𝜆) 5 

We have a similar correction factor Cwl,Ref for the measured signal Uref of the reference detector 

𝐶௪௟,௥௘௙ = 1 − 
௦ೝ೐೑

ᇲ (ఒబ)

௦ೝ೐೑(ఒబ)
 𝑢(𝜆)  6 

In the measurement model the correction factors are applied on the measured signals and the correction 

factor Cwl on the spectral responsivity is given by: 

𝐶௪௟ =
஼ೢ೗,ವೆ೅

஼ೢ೗,ೝ೐೑
=

ଵି 
ೞᇲ(ഊబ)

ೞ(ഊబ)
 ௨(ఒ)

ଵି 
ೞೝ೐೑

ᇲ (ഊబ)

ೞೝ೐೑(ഊబ)
 ௨(ఒ)

 7 

As the correction factor Cwl is in the measurement model it is expected to be close to unity, its uncertainty 

u(Cwl) can be estimated by: 

𝑢(𝐶௪௟) = 1 − 𝐶௪௟ = 1 −
ଵି 

ೞᇲ(ഊబ)

ೞ(ഊబ)
 ௨(ఒ)

ଵି 
ೞೝ೐೑

ᇲ (ഊబ)

ೞೝ೐೑(ഊబ)
 ௨(ఒ)

 8 

 

where 

 𝑢(𝑐୵୪(𝜆)) is the contribution of the wavelength uncertainty for the spectral responsivity 

 𝑢(𝜆)  is the uncertainty of the measured wavelength 

 𝑠ୈ୙୘/୰ୣ୤
ᇱ (𝜆) are the first derivatives of the spectral responsivities of DUT and reference detector 

 𝑠ୈ୙୘/୰ୣ୤(𝜆) are the spectral responsivities of DUT and reference detector 

The correlation of wavelength uncertainty has three contributions: 

- Uncertainty due to the calibration of the wavelength scale. This contribution is partially 

correlated (see CIE 198-SP1.4:2011). For Monte Carlo simulations, one has to use the 

multivariate distribution with the correlation coefficient matrix defined in CIE 198-SP1.4.  

- Uncertainty on the ambient temperature that leads to a fully correlated contribution to spectral 

data. For Monte Carlo simulations, one has to use the same set of randomly drawn numbers 

for simulation of the wavelength variation for every wavelength setting if the spectral responsivity 

of the detector is to be specified for more than one wavelength. 

- Uncertainty due to a shift of the wavelength scale (especially for scanning instruments) which 

is fully positive or negative correlated depending on the slope of the spectral responsivity. For 

Monte Carlo simulations, one has to use the same set of randomly drawn numbers for 

simulation of the wavelength variation for every wavelength setting if the spectral responsivity 

of the detector is to be specified for more than one wavelength. 

In Monte Carlo simulations one has to draw numbers for the wavelength uncertainty from multivariate 

distributions including partial correlations as mentioned above. As default, one may consider only 

including the first contribution from CIE 198-SP1.4, with a correlation coefficient of 0.3 for the first 
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neighbouring wavelengths. Note that this contribution is different from the contribution of the MU of the 

spectral responsivity of the reference detector. 

 

Uncertainty due to spectral bandwidth  

Using a monochromator with equal slits widths for the entrance and exit ports gives an output beam 

power P(λ) with triangular spectral shape   

𝑃(𝜆) = 1 −
|ఒିఒబ|

௱ఒ
= ቐ

1 +
ఒିఒబ

௱ఒ
, 𝜆 ≤ 𝜆଴

1 −
ఒିఒబ

௱ఒ
, 𝜆 ≥ 𝜆଴

 9 

 

where 

𝛥𝜆 FWHM (Full Width Half Maximum) 

The signal measured with a detector at the output of a monochromator is proportional to the 

product 𝑆(λ) ∙ P(λ) of the spectral responsivity of the detector and the spectral power distribution 

of the beam integrated over the wavelength interval [ λ0 - Δλ; λ0 + Δλ ]. 

Taking into account the second order of the Taylor expansion at a wavelength λ0 . 

 

𝑠(𝜆) = 𝑠(𝜆଴) + 𝑠ᇱ(𝜆଴) (𝜆 − 𝜆଴) +  
௦ᇲᇲ(ఒబ)

ଶ
 (𝜆 − 𝜆଴)ଶ + 𝑜((𝜆 − 𝜆଴)ଶ) 10 

where  

S(λ) Spectral responsivity 

o(λ) Error (due to higher orders) 

For wavelength λ < λ0: 

𝑆(𝜆) ∙  𝑃(𝜆) = 𝑆(𝜆଴) +
ௌ(ఒబ)

௱ఒ
(𝜆 − 𝜆଴) + 𝑆ᇱ(𝜆଴)(𝜆 − 𝜆଴) +

ௌᇲ(ఒబ)

௱ఒ
(𝜆 − 𝜆଴)ଶ +

ௌᇲᇲ(ఒబ)

ଶ
(𝜆 − 𝜆଴)ଶ +

ௌᇲᇲ(ఒబ)

ଶ ௱ఒ
(𝜆 − 𝜆଴)ଷ

 11 

and 

 

∫ 𝑆(𝜆) ∙  𝑃(𝜆)
ఒ଴

ఒ଴ ି ௱ఒ
𝑑𝜆  = 𝑆(𝜆଴) 𝛥𝜆 −

ௌ(ఒబ)

ଶ
 𝛥𝜆 −

ௌᇲ(ఒబ)

ଶ
𝛥𝜆ଶ +

ௌᇲ(ఒబ)

ଷ
𝛥𝜆ଶ +

ௌᇲᇲ(ఒబ)

଺
𝛥𝜆ଷ −

ௌᇲᇲ(ఒబ)

଼
𝛥𝜆ଷ =

 
ௌ(ఒబ)

ଶ
 𝛥𝜆 −

ௌᇲ(ఒబ)

଺
𝛥𝜆ଶ +

ௌᇲᇲ(ఒబ)

ଶସ
𝛥𝜆ଷ 12 

 

 

For wavelength λ > λ0: 
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𝑆(𝜆) ∙  𝑃(𝜆) = 𝑆(𝜆଴) −
ௌ(ఒబ)

௱ఒ
(𝜆 − 𝜆଴) + 𝑆ᇱ(𝜆଴)(𝜆 − 𝜆଴) −

ௌᇲ(ఒబ)

௱ఒ
(𝜆 − 𝜆଴)ଶ +

ௌᇲᇲ(ఒబ)

ଶ
(𝜆 − 𝜆଴)ଶ −

ௌᇲᇲ(ఒబ)

ଶ ௱ఒ
(𝜆 − 𝜆଴)ଷ

 13 

 

and 

∫ 𝑆(𝜆) ∙  𝑃(𝜆)
ఒ଴

ఒ଴ ି ௱ఒ
𝑑𝜆  = 𝑆(𝜆଴) 𝛥𝜆 −

ௌ(ఒబ)

ଶ
 𝛥𝜆 +

ௌᇲ(ఒబ)

ଶ
𝛥𝜆ଶ −

ௌᇲ(ఒబ)

ଷ
𝛥𝜆ଶ +

ௌᇲᇲ(ఒబ)

଺
𝛥𝜆ଷ −

ௌᇲᇲ(ఒబ)

଼
𝛥𝜆ଷ =

 
ௌ(ఒబ)

ଶ
 𝛥𝜆 +

ௌᇲ(ఒబ)

଺
𝛥𝜆ଶ +

ௌᇲᇲ(ఒబ)

ଶସ
𝛥𝜆ଷ 14 

 

Therefore the measured signal U is  

𝑈 = ∫ 𝑆(𝜆) ∙  𝑃(𝜆)
ఒ଴ା ௱ఒ

ఒ଴ ି ௱ఒ
𝑑𝜆  = 𝑆(𝜆଴) 𝛥𝜆 +

ௌᇲᇲ(ఒబ)

ଵଶ
𝛥𝜆ଷ 15 

 

The true signal U0 is  

𝑈଴ = 𝑆(𝜆଴) 𝛥𝜆 16 

 

Therefore the correction factor corrbwl is given by: 

𝑐𝑜𝑟𝑟௕௪௟ =
௎బି௎

௎బ
= 1 −

ௌᇲᇲ(ఒబ)

ଵଶ

௱ఒమ

ௌ(ఒబ)
 17 

This correction factor applies for the reference detector and the DUT 

 

𝑐௕௪(𝜆) =
ଵି௱ఒమ⋅

భ

భమ
⋅
௦ೃಶಷ

ᇲᇲ (ఒ)
௦ೃಶಷ(ఒ)

൘

ଵି௱ఒమ⋅
భ

భమ
⋅
௦ವೆ೅

ᇲᇲ (ఒ)
௦ವೆ೅(ఒ)

൘
  18 

where 

 Δ𝜆 is the FWHM bandwidth of the spectral measurement setup 

 𝑠௫
ᇱᇱ(𝜆) is the second derivative of the DUT or reference detector responsivity 

Propagating the uncertainty of the beam spectral bandwidth measurement u(Δλ) yields the uncertainty 

of the correction factor u(cbw(λ)) for the spectral responsivity.. 

𝑢൫𝑐௕௪(𝜆)൯ =
ଶ⋅൫௕(ఒ)ି௔(ఒ)൯⋅௱ఒ⋅௨(௱ఒ)

൫ଵି௱ఒమ⋅௕(ఒ)൯
మ   19 

where: 

𝑎(𝜆) =
ଵ

ଵଶ
⋅

𝑠ோாி
ᇱᇱ (𝜆)

𝑠ோாி(𝜆)൘   20 

 

𝑏(𝜆) =
ଵ

ଵଶ
⋅

𝑠஽௎்
ᇱᇱ (𝜆)

𝑠஽௎்(𝜆)൘   21 
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For Monte Carlo simulation one has to consider two cases: 

- The wavelengths that are generated with the same combination of grating and slit width 

of the monochromator. The bandwidth corrections are fully correlated. The off-diagonal 

elements of the correlation coefficients matrix are equal to “1”. 

- For wavelengths that are generated with combinations that differ from the others by the grating 

or slit width, the corresponding bandwidth corrections are uncorrelated. The off-diagonal 

elements of the correlation coefficients matrix are equal to “0”. 

 

Uncertainty due to polarization dependency of the DUT (no correlation) 

The maximum change in the detector responsivity due to polarization Δ𝑠୮୭୪ presented in (Schneider 

2018) can be directly used for the correction factor: 

𝑐௣௢௟(𝜆) = 1 + 𝛥𝑠௣௢௟ ⋅ 𝑃௣௢௟(𝜆) ⋅ 𝑠𝑖𝑛(2𝜋 ⋅ 𝜑)  22 

where 

 𝑃୮୭୪(𝜆) is the degree of linear polarization of the incident radiant flux 

 𝜑 is the polarization angle 

The calculation of the uncertainty of 𝑐௣௢௟(𝜆) is straightforward by propagating the uncertainties of the 

contributing parameters. For most trap detectors or single photodiode detectors (with photodiodes 

perpendicular to the optical axis) the effects of polarization are not significant compared to the signal-

to-noise ratio of the measurement and can thus be neglected. Nevertheless, this needs to be checked 

for. 

 

Uncertainty due to DUT, reference detector and the beam uniformities (no correlation) 

The correction factor for non-uniformities of the detectors and the non-uniformity of incident radiation is 

calculated using the surface integral: 

𝑐௨௡௜௙(𝜆)  = ቂ∯ 𝑠௥௘௟,஽௎்(𝑥, 𝑦, 𝜆)𝑑𝑥𝑑𝑦
஺

∯ 𝑠௥௘௟,஽௎்(𝑥, 𝑦, 𝜆) ⋅ 𝐸௥௘௟(𝑥, 𝑦, 𝜆)𝑑𝑥𝑑𝑦
஺

ൗ ቃ ⋅

ቂ∯ 𝑠௥௘௟,௥௘௙(𝑥, 𝑦, 𝜆) ⋅ 𝐸௥௘௟(𝑥, 𝑦, 𝜆)𝑑𝑥𝑑𝑦
஺

∯ 𝑠௥௘௟,௥௘௙(𝑥, 𝑦, 𝜆)𝑑𝑥𝑑𝑦
஺

ൗ ቃ  23 

where 

𝑠୰ୣ୪,ୈ୙୘/ୖ୉୊(𝑥, 𝑦, 𝜆) are the locally resolved relative spectral responsivity distributions of DUT and REF 

detector 

𝐸୰ୣ୪(𝑥, 𝑦, 𝜆) is the locally resolved relative spectral irradiance distribution in the measurement plane. If 

scanning double-monochromators are used, the uniformity of the beam can be drastically improved if 

the monochromators are connected in subtractive mode instead of additive mode.  
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The uncertainty of 𝑐୳୬୧୤(𝜆) is calculated by propagating the uncertainties of the irradiance distribution 

and responsivity distributions of DUT and reference detector.  

In Monte Carlo simulations, for each wavelength one has to generate different set of random 

numbers for srel,DUT(x,y,λ), srel,REF(x,y,λ) and Erel(x,y,λ) from the measurement of the spatial uniformities 

of detectors and beam irradiance. 

NOTE 1: Beam uniformity may also cause correlations due to the uncertainty of positioning the 

reference detector and the DUT in the measurement beam. Also possible wavelength 

dependence of the uniformity may cause correlation, as it is impractical to measure the 

uniformity at each measurement wavelength. 

 

Uncertainty due to distance error (correlation) 

The correction factor for distance offsets is set to unity because the detectors are measured in the same 

nominal distance to the source of the radiation field. However, the deviation from ideal alignment and 

uncertainties of determining the detectors reference plane contribute to the uncertainty according to: 

𝑢(𝑐ௗ௜௦௧) = ටቀ
௨(ௗವೆ೅)

ௗబ
ቁ

ଶ
+ ቀ

௨(ௗೃಶಷ)

ௗబ
ቁ

ଶ
   24 

where 

 𝑑ୈ୙୘/ୖ୉୊ are the distances of the DUT and ref from the source 

 𝑑଴  is the nominal distance between detector and source 

In Monte Carlo simulations, one has to use the same set of random numbers for every wavelength 

if the spectral responsivity of the detector is to be specified for more than one wavelength. 

 

3.4.2 Uncertainty evaluation 

The combined measurement uncertainty is calculated using Monte Carlo technique (GUM supplement 

1). For each input quantity in the measurement model random values are calculated based on the 

uncertainty estimated for the input quantity and according to the rules mentioned above.  

The measured voltages for DUT and reference detector are converted to Student-T-Distributions based 

on the number of readings done for each wavelength. The random number generation should be 

performed for each wavelength according to the rules given in 3.4.1. The amplifiers resistances are 

converted to normal distributions as stated in the calibration certificates. 

The correction factors for bandwidth, uniformity and polarization effects (non-correlated quantities) are 

calculated based on normal distributions. 

The uncertainties due to the aperture area of the reference detector, the distances to the source and 

the wavelength scale shift due to temperature variation etc. are quantities fully correlated with respect 

to all other wavelengths. To carry out Monte Carlo Simulation, the uncertainty contributions are 
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determined using multivariate Gaussian distributions, i.e. the spectral values are expected to be column-

vector quantities to which respective correlation matrices are applied. In this way, the calculation is 

performed once and applied to all wavelengths. 

Other uncertainty components that need to be evaluated taking into account the correlation between the 

wavelengths, are: 

- Uncertainty due to the wavelength scale calibration. This is partially correlated and is evaluated 

using multivariate Gaussian distribution. 

- Uncertainty due to the calibration of the spectral responsivity of the reference detector. This is 

converted to multivariate Gaussian distribution if the correlation matrix is available or to normal 

distribution if the correlation matrix is not provided 

For the amplifiers resistance calibration correlation should be taken into account and multivariate 

Gaussian distribution should be applied. However it may not be necessary to determine the uncertainty 

contribution for each wavelengths. As mentioned in 3.4.1, the same random number generation can be 

applied for wavelengths for which the same amplifier resistance is used.    

The uncertainty components of the DUT spectral irradiance responsivity s(λ), measurement uncertainty 

and the information that define the PDF parameters are summarized in Table 1. 

 
 
 

Table 1: s(𝜆) uncertainty components 

Type of 
variable 

Uncertainty 
components 

PDF type Correlation Comments Effect on Monte Carlo 
simulation 

Column 
vector 
of 
spectral 
data 
points 

Signal 
readings 
DUT, 
reference 
detector 
and monitor 
detector 

Gaussian 
multivariate 

Partially 
correlated 

Spectrally 
dependant 

From the measurement 
data for a given 
wavelength standard 
deviations and 
covariance are 
determined. A 
covariance matrix can 
be built and a joint PDF 
can be determined 

 

Column 
of 
amplifier 
settings 
for 
spectral 
ranges 

Calibration 
of current 
amplifier  

Gaussian 
Multivariate 

Fully 
correlated 
for equal 
settings 
(simple 
correlation 
matrix) 

Partially 
spectrally 
dependant 

If for a given 
wavelength a same 
gain is used for at least 
two signals from DUT, 
REF or monitor 
detectors then 
correlation should be 
taken into account for 
those signals 
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Column 
vector 
of 
spectral 
data 
points 

Spectral 
irradiance 
responsivity 
of reference 
detector, 
s,REF 

Normal Partially 
correlated; 
correlation 
matrix if 
provided) 

Spectrally 
dependant 

If a NxN correlation 
matrix or covariance 
matrix is provided 
together with the N 
spectral data points, the 
multivariate drawing for 
the spectral input 
values has to be based 
on the provided 
covariance matrix - e.g. 
by Cholesky 
decomposition or 
adequate software 
tools. As a boundary 
condition, the 
correlation matrix must 
be positive 
semidefinite. If this is 
not the case, the matrix 
must be "cleaned". 

Scalar Aperture 
area of the 
reference 
detector, 
AREF 

Normal Fully 
correlated 

Non-
spectrally 
dependant 

This PDF is generated 
once and applied to all 
wavelengths 

Column 
vector 
for 
spectral 
data 
points 

Calibration 
of the 
wavelength 
scale, cwl 

Multivariate Partially 
correlated 
(CIE 198-
SP1.4:2011) 

Spectrally 
dependant 

Determination of the 
correlation coefficients 
and the associated 
correlation matrix.  

Column 
vector 
for 
spectral 
data 
points 

Wavelength 
scale 
temperature 
dependent, 
cwl, T 

Multivariate Fully 
correlated 

Spectrally 
dependant 

Random numbers can 
be generated once and 
applied to all 
wavelengths taking into 
account the uncertainty 
associated to each 
wavelengths  

Column 
vector 
for 
spectral 
data 
points 

Source 
spectral 
bandwidth, 
cbw 

Multivariate Fully 
correlated 

Partially 
spectrally 
dependant 

Correlation to be taken 
into account for groups 
of wavelengths with the 
same spectral 
bandwidth setting 

Scalar Distance, 
cdist 

Multivariate Fully 
correlated 

Non-
spectrally 
dependant 

This PDF is generated 
once and applied to all 
wavelengths 
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3.4.3 Covariance matrix 

Although in principle the uncertainty considerations taking correlations into account can also be carried 

out using classical GUM procedures, the necessary determination of the measurement equation for 

multivariate demanding quantities is getting very sophisticated. Here, the approach of determining the 

combined measurement uncertainty via Monte Carlo simulations provides significant simplifications. 

Furthermore, in modern computer languages like Matlab or Python libraries are available which already 

provides program-packages to properly generate random numbers according to required distributions 

and to draw samples for correlated multivariate quantities. It is mandatory that proper random number 

generation is provided and validated (§9.1.4, Note §C1.2, JCGM 101:2008). 

Monte Carlo technique relies on a set of random trials based on the random number generation. 

Sufficient number N of trials should be implemented to get a reliable value for the uncertainty: one million 

trials is recommended (Note §7.2.1, JCGM 101:2008). 

 For one particular wavelength λi and each uncertainty component a matrix column of N values is 

generated and the sorted order should not be changed. The values corresponding to a line “k” of all 

matrices are combined in the measurement model. This generates as output a matrix column of N values 

for each spectral data of the DUT. 

 

𝑠(𝜆௜) = ൭
𝑠(𝜆௜, 1)

⋮
𝑠(𝜆௜, 𝑁)

൱   25 

 

From this matrix column we can determine the estimated value of s(λi) which is the average of the N 

values of the matrix and the variance of the average s2(𝑠(𝜆ప)തതതതതതത) 

 

𝑠(𝜆ప)തതതതതതത =
∑ ௦(ఒ೔,௞)ಿ

ೖసభ

ே
  26 

 

𝑠ଶ൫𝑠(𝜆ప)തതതതതതത൯ =
∑ ൫௦(ఒ೔,௞)ି௦(ఒഢ)തതതതതതത൯

మಿ
ೖసభ

ே⋅(ேିଵ)
  27 

 

We can also determine the covariance between the spectral data s(s(λi), s(λj)) 

 

𝑠 ቀ𝑠(𝜆௜), 𝑠൫𝜆௝൯ቁ =
∑ ൫௦(ఒ೔,௞)ି௦(ఒഢ)തതതതതതത൯∙ቀ௦൫ఒೕ,௞൯ି௦൫ఒണ൯തതതതതതതቁಿ

ೖసభ

ே⋅(ேିଵ)
  28 
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And the correlation coefficient, which is a dimensionless quantity. 

 

𝑟 ቀ𝑠(𝜆௜), 𝑠൫𝜆௝൯ቁ =  
௦ቀ௦(ఒ೔),௦൫ఒೕ൯ቁ

௦(௦(ఒ೔))∙௦(௦൫ఒೕ൯)
   29 

 

Therefore 

 

𝑟൫𝑠(𝜆௜), 𝑠(𝜆௜)൯ = 1   30 

−1 < 𝑟 ቀ𝑠(𝜆௜), 𝑠൫𝜆௝൯ቁ < 1    31 

 

 

These results allow the construction of the correlation matrix. 

 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 𝑟 ൬𝑠 ቀ𝜆1ቁ , 𝑠 ቀ𝜆2ቁ൰ 𝑟 ൬𝑠 ቀ𝜆1ቁ , 𝑠 ቀ𝜆3ቁ൰ 𝑟 ൬𝑠 ቀ𝜆1ቁ , 𝑠 ቀ𝜆4ቁ൰ 𝑟 ൬𝑠 ቀ𝜆1ቁ , 𝑠 ቀ𝜆5ቁ൰

𝑟 ൬𝑠 ቀ𝜆2ቁ , 𝑠 ቀ𝜆1ቁ൰ 1 𝑟 ൬𝑠 ቀ𝜆2ቁ , 𝑠 ቀ𝜆3ቁ൰ 𝑟 ൬𝑠 ቀ𝜆2ቁ , 𝑠 ቀ𝜆4ቁ൰ 𝑟 ൬𝑠 ቀ𝜆2ቁ , 𝑠 ቀ𝜆5ቁ൰

𝑟 ൬𝑠 ቀ𝜆3ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆3ቁ , 𝑠 ቀ𝜆2ቁ൰ 1 𝑟 ൬𝑠 ቀ𝜆3ቁ , 𝑠 ቀ𝜆4ቁ൰ 𝑟 ൬𝑠 ቀ𝜆3ቁ , 𝑠 ቀ𝜆5ቁ൰

𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆2ቁ൰ 𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆3ቁ൰ 1 𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆5ቁ൰

𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆2ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆3ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆4ቁ൰ 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

32 

 

However  

𝑟 ቀ𝑠(𝜆௜), 𝑠൫𝜆௝൯ቁ = 𝑟 ቀ𝑠൫𝜆௝൯, 𝑠(𝜆௜)ቁ 33 

 

Therefore the correlation matrix has a symmetry and reduces to: 

 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 𝑟 ൬𝑠 ቀ𝜆2ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆3ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆1ቁ൰

𝑟 ൬𝑠 ቀ𝜆2ቁ , 𝑠 ቀ𝜆1ቁ൰ 1 𝑟 ൬𝑠 ቀ𝜆3ቁ , 𝑠 ቀ𝜆2ቁ൰ 𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆2ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆2ቁ൰

𝑟 ൬𝑠 ቀ𝜆3ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆3ቁ , 𝑠 ቀ𝜆2ቁ൰ 1 𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆3ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆3ቁ൰

𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆2ቁ൰ 𝑟 ൬𝑠 ቀ𝜆4ቁ , 𝑠 ቀ𝜆3ቁ൰ 1 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆4ቁ൰

𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆1ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆2ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆3ቁ൰ 𝑟 ൬𝑠 ቀ𝜆5ቁ , 𝑠 ቀ𝜆4ቁ൰ 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

34 

Similarly the covariance matrix can be set. 
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4 Spectral irradiance of sources 

In many NMIs the primary spectral irradiance scale is realized, maintained and disseminated  using a 

high temperature blackbody radiator of type BB3200pg . The main parameter of a black body, the 

temperature, has to be determined very accurately. Usually broadband-filter detectors are well 

established for the detector-based determination of the so-called radiometric temperature .  

The spectral irradiance at the reference plane of the spectroradiometer is calculated according to 

Planck’s law using the geometric parameters and the measured radiometric temperature of the 

blackbody. 

4.1 Calibration facility 

Spectral irradiance of sources are measured with a facility that is based on a monochromator. It is 

recommended to use a double monochromator particularly in the UV range. A schematic of a calibration 

set-up is shown on Figure 4 . 

 
 

 
 

Figure 4: Schematic for a source spectral irradiance calibration set-up 

Examples of facilities at PTB and LNE are shown on Figure 5 and Figure 6 respectively. 
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Figure 5 : PTB set-up 

 

The PTB spectroradiometer for spectral irradiance calibrations (Figure 5) consists of an integrating 

sphere as entrance optics, an Acton-Research Spectra-ProTM-500 double monochromator system with 

triple grating turrets and three detectors to cover the spectral range from 250 nm to 2500 nm [8]. The 

grating turrets are equipped with three gratings with 1200 l/mm for the spectral range from 250 nm up 

to 1100 nm and 300 l/mm for the infrared spectral range above 1100 nm. The spectral bandwidth of the 

system is controlled by 8 motorized slits and varies for different spectral regions. 

The entrance port of the integrating sphere is formed by a precise aperture with 11 mm diameter which 

defines the reference plane for spectral irradiance measurements. The detectors at the exit ports of the 

monochromators are a photomultiplier tube (PMT) for the spectral range from 250 nm to 670 nm, a Si-

Photodiode (680 nm to 1100 nm) and an extended InGaAs-detector (1200 nm to 2500 nm). A built-in 

monitor lamp is used to monitor the stability of the spectroradiometer-system during extended 

measurement campaigns. The system is placed on a translation stage to allow the quasi-simultaneous 

measurement of a group of lamps with respect to the blackbody radiation. 
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Figure 6 : LNE-CNAM set-up 

The spectroradiometer of the LNE-CNAM is described in Figure 6. The High Temperature Black Body 

(HTBB) is used as an irradiance reference for the calibration of transfer sources. For this purpose, a 

spectroradiometric system have been placed between the HTBB and transfer lamps (Lamp1 and 

Lamp2). The integrating sphere that receives the flux from the sources has an entrance port equipped 

with a circular calibrated aperture and an output port located at 90° with a rectangular slit of 2 mm x 15 

mm. Two Ø 150 mm spherical mirrors focus the image of the sphere exit slit onto the entrance slit of a 

double monochromator.  

The filter radiometer and the integrating sphere are placed on the same automated translation table. 

This allows the blackbody temperature to be automatically measured during the measurement cycle. 

The integrating sphere is mounted on a rotation stage that allows a 180° rotation around the axis 

centered on the exit slit. This allows the collection of either the flux from the HTBB, or the flux of the 

transfer lamps. The top and bottom of the exit slit are reversed but its position is the same. The flux is 

then guided by the 2 mirrors from the sphere to the input slit of the monochromator. This makes it 

possible to measure the spectral distribution of sources from 250 nm to 2500 nm. 

The monochromator is a Jobin Yvon HRD1 which have been retrofitted with a high precision motorized 

translation stage for automatic selection of the wavelength. Three pairs of gratings are used to cover 

the wavelength range from 250 nm to 2500 nm.  

Four detectors are used:  

- Photomultiplier tube (PM R456 Hamamatsu) for the spectral range from 250 nm to 700 nm  

- Silicium photodiode (S6337 Hamamatsu) for the spectral range from 475 nm to 1100 nm  

- InGaAs photodiode (G6126 Hamamatsu) for the spectral range from 1000 nm to 1600 nm  

- Extended InGaAs photodiode (J23TE2-66C-R03M-2.6 Teledyn) for the spectral range from 900 

nm to 2500 nm  
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The PM detector is mounted in front of the second exit slit of the monochromator (double monochromator 

configuration). Other detectors are mounted to first exit slit (single monochromator configuration). The 

extended InGaAs detector is Thermoelectrically Cooled. 

 

4.2 Measurement procedure 

The basic set-up as described in 4.1 is used for a standard lamp calibration and uncertainty evaluation. 

The measurement principle is based on a comparison between a reference source (black body) and a 

standard lamp using a monochromator for spectral distribution measurement. The calibration of the 

standard lamp is performed in three steps: 

- Step 1: measurement of the black body temperature 

- Step 2: determination of the spectral distribution of the black body 

- Step 3: calibration of the standard lamp compared to the black body 

4.2.1 Measurement of the temperature of the blackbody 

The first step is to measure the radiometric temperature TBB of the blackbody. This is performed using 

a filter radiometer which signal UFB(TBB) is directly related to the temperature of the blackbody according 

to : 

 

𝑈ி஻(𝑇஻஻) = 𝜖 · 𝑉௜௎ ·
஺ಳಳ

ௗಷವ
మ ∫ 𝑠(𝜆)

௖భ

గ·௡మ·ఒఱ

ଵ

௘௫௣൬
೎మ

೙·ഊ·೅ಳಳ
൰ିଵ

𝑑𝜆 35 

Where,  

UFB(TBB) Photosignal of the broadband-filter radiometer measured in Volts 

 Effective emissivity of the blackbody radiator 

ViU Gain of the electrical measurements  

ABB Size of the blackbody opening aperture  

dFD Distance of the filter detector to the blackbody aperture 

s(λ) Spectral responsivity distribution of the filter radiometer (A.m².W-1) 

 Wavelength 

TBB Radiometric temperature of the blackbody radiator 

c1,c2 Planck constants 

n Refractive index of air 
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Equation 𝑈ி஻(𝑇஻஻) = 𝜖 · 𝑉௜௎ ·
஺ಳಳ

ௗಷವ
మ ∫ 𝑠(𝜆)

௖భ

గ·௡మ·ఒఱ

ଵ

௘௫௣൬
೎మ

೙·ഊ·೅ಳಳ
൰ିଵ

𝑑𝜆 35 can be 

rewritten as: 

𝑈ி஻(𝑇஻஻) = 𝐾 ∫ 𝑠(𝜆) 𝐿(𝜆, 𝑇஻஻) 𝑑𝜆   36  

Where L(λ,TBB) is the spectral radiance of the blackbody radiator. 

Generally, 𝑈𝐹𝐵(𝑇஻஻) = 𝜖 · 𝑉௜௎ ·
஺ಳಳ

ௗಷವ
మ ∫ 𝑠(𝜆)

௖భ

గ·௡మ·ఒఱ

ଵ

௘௫௣൬
೎మ

೙·ഊ·೅ಳಳ
൰ିଵ

𝑑𝜆 35, is solved 

numerically by iteratively varying TBB until the calculated signal, right side of equation 𝑈ி஻(𝑇஻஻) =

𝜖 · 𝑉௜௎ ·
஺ಳಳ

ௗಷವ
మ ∫ 𝑠(𝜆)

௖భ

గ·௡మ·ఒఱ

ଵ

௘௫௣൬
೎మ

೙·ഊ·೅ಳಳ
൰ିଵ

𝑑𝜆 35, is equal to the measured signal UFB(TBB) 

[10] . Methods such as the bisection rule can be used to achieve this, but the most efficient method is 

to use the Newton-Raphson algorithm, based on an initial estimate T0 . The algorithm then proceeds 

by forming successively better estimates, Ti , for i = 1, 2, 3, …, using the equation 

𝑇௜ାଵ = 𝑇௜ +
௎ಷಳ( ಳ்ಳ)ି௄ ∫ ௦ೝ೐೗(ఒ) ௅(ఒ,்೔) ௗఒ

೎మ

೅೔
మ ௄ ∫ ௦ೝ೐೗(ఒ) 

ಽ൫ഊ,೅೔൯

೙ഊൣభష೐ೣ೛൫ష೎మ ൫೙ഊ೅೔൯⁄ ൯൧
 ௗఒ
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Convergence to better than 0.1 mK is usually achieved in fewer than 5–10 iterations, depending on 

how close the initial guess, T0 , is to the true temperature. 

4.2.2 Determination of the blackbody spectral irradiance 

Knowing the temperature TBB of the blackbody the spectral irradiance E(λ,TBB)  at the input port of the 

integrating sphere is given by: 

 

𝐸(𝜆, 𝑇஻஻  )  = 𝜖 ·
஺ಳಳ 

ௗ೏೔೑೑
మ ·

௖భ

గ·௡మ·ఒఱ
·

ଵ

௘௫௣൬
೎మ

೙·ഊ·೅ಳಳ)
൰ିଵ
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With 

 Effective emissivity of the blackbody radiator 

ABB Size of the blackbody opening aperture 

ddiff Distance of the input port of the integrating sphere to the blackbody aperture 

 Wavelength 

TBB Radiometric temperature of the blackbody radiator 

c1, c2 Planck constants 

n Refractive index of air 
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4.2.3 Measurement of the spectral irradiance of the standard lamp 

For each wavelength setting of the monochromator, the signal delivered by a detector set on the 

monochromator when irradiated by the standard lamp is compared to the signal delivered by the same 

detector when irradiated by the black body. 

Then the standard lamp spectral irradiance EST(λ) is given by: 

𝐸ௌ்(𝜆) = 𝐸(𝜆, 𝑇஻஻) .
௏ೄ೅

௏ಳಳ
 .

ீಳಳ

ீೄ೅
  39 

Where 

E(λ,TBB) Calculated spectral irradiance of the blackbody-radiator 

VST, VBB Measured photosignal with the standard lamp or the blackbody 

GST, GBB Amplifier gains for  standard lamp or blackbody 

 

4.3 Uncertainty evaluation 

4.3.1 Uncertainty of the blackbody temperature 

The model for the blackbody temperature measurement with a broadband filter radiometer is: 

 

𝑈ி஻(𝑇஻஻) = 𝜖 · (𝑉௜௎ + 𝛿𝑉௜௎) · 𝑐𝑜𝑠 𝛼ଵ · 𝑐𝑜𝑠 𝛼ଶ ·
஺ಳಳାఋ஺ಳಳ

ௗಷವ
మ ∫൫𝑠(𝜆) + 𝛿𝑠(𝜆)൯

௖భ

గ·௡మ·ఒఱ

ଵ

௘௫௣൬
೎మ

೙·ഊ·೅ಳಳ
൰ିଵ

𝑑𝜆  40 

 

With: 

 
UFB(TBB) Photosignal of the broadband-filter radiometer measured in Volts 

 Effective emissivity of the blackbody radiator 

ViU, ViU Gain of the electrical measurements and its drift  

cos α1, cos α2 Misalignment of filter radiometer to the optical axis of the black body 

ABB, ABB Size of the blackbody opening aperture and its drift  

dFD Distance of the filter radiometer to the blackbody aperture 

s, s Absolute spectral responsivity of the filter radiometer and its drift  

 Wavelength used for calculation 

TBB Radiometric temperature of the blackbody radiator 

c1,c2 Planck constants 

n Refractive index of air 
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For uncertainty evaluation the different input quantities are uncorrelated except for the calculation of  the 

integral for which the filter radiometer spectral responsivity data are correlated and multivariate PDF 

must be use taken into account the correlation matrix given with the calibration certificate of the filter 

radiometer (eventually the data from the simulation performed by the calibration laboratory). 

Repeatability of the filter radiometer signal should be evaluated in order to determine the associated 

uncertainty. Then for Monte Carlo simulation a Student’s t PDF is assigned to this uncertainty 

component. 

The emissivity ϵ is determined with a standard uncertainty u( associated with a Gaussain 

PDF. For Monte Carlo simulations, one has to use a set of randomly drawn numbers for simulation 

of the emissivity. 

The uncertainty of the amplifier gain u(ViU) is obtained from the calibration certificate of the gain 

associated with a Gaussian PDF. For Monte Carlo simulations, one has to use a set of randomly 

drawn numbers 

For the uncertainty of the drift of the amplifier u(δViU) a Uniform PDF is assigned. For Monte Carlo 

simulations, one has to use a set of randomly drawn numbers for u(δViU)   

For the uncertainty of the alignments of the blackbody u(cos α1) and the filter radiometer u(cos α2)  

Gaussian PDF are assigned. For Monte Carlo simulations, one has to use a set of randomly drawn 

numbers separately for u(cos α1) and u(cos α2)   . 

The uncertainty of the aperture area of the blackbody u(ABB) is obtained from the calibration certificate 

of the aperture associated with a Gaussian PDF. For Monte Carlo simulations, one has to use a set 

of randomly drawn numbers for simulation of the aperture area. 

For the uncertainty of the aperture contamination during operation of the blackbody u(δABB)  

Uniform PDF is assigned. For Monte Carlo simulations, one has to use a set of randomly drawn 

numbers for u(δABB) . 

The uncertainty u(dFD) of the distance between the filter radiometer and the blackbody aperture 

measurement is obtained from the calibration certificate of the distance gauge associated with a 

Gaussian PDF. For Monte Carlo simulations, one has to use a set of randomly drawn numbers for 

simulation of the distance measurement. 

The uncertainty of the filter radiometer spectral responsivity u(s(λ)) is obtained from the calibration 

certificate along with the covariance matrix and eventually the data of the Monte Carlo simulation 

performed by the calibration laboratory. The spectral input are correlated therefore a multivariate 

Gaussian PDF must be taken into account. 



19NRM02”RevStdLED” WP2 Measurement Uncertainty

  28 

For the uncertainty of the drift of the filter radiometer spectral responsivity u(δs(λ))  Uniform PDF 

are assigned to the drift of each spectral value that are considered uncorrelated. For Monte Carlo 

simulations, one has to use a set of randomly drawn numbers for each spectral data.  

A summary of the uncertainty components contributions for the blackbody temperature measurement is 

shown in Table 2. 

 

Table 2: Uncertainty components for the measurement of the blackbody temperature 

Type of 
variable 

Uncertainty 
components 

PDF type Correlation Comments Effect on Monte Carlo 
simulation 

Scalar Filter 
radiometer 
signal 
readings  

Student’s t No  One set of random 
values 

Scalar Emissivity  Gaussian  No  One set of random 
values 

Scalar Amplifier gain Gaussian No  One set of random 
values  

Scalar Drift of 
amplifier gain 

Uniform No  One set of random 
values  

Scalar Alignment of 
the blackbody 
u(cos α1)  

Gaussian No  One set of random 
values 

Scalar Alignment of 
the filter 
radiometer 
u(cos α2)   

Gaussian No  One set of random 
values 

Scalar Aperture area Gaussian No  One set of random 
values 

Scalar Aperture 
contamination 

Uniform No  One set of random 
values 

Scalar Distance Gaussian No  One set of random 
values 

Column 
vector 

Filter 
radiometer 
spectral 
responsivity 

Gaussian 
multivariate 

Yes Integral of 
spectral 
data 

If a NxN correlation 
matrix or covariance 
matrix is provided 
together with the N 
spectral data points, 
the multivariate 
drawing for the 
spectral input values 
has to be based on 
the provided 
covariance matrix 

Column 
vector 

Drift of filter 
radiometer 
spectral 
responsivity 

Uniform No Integral of 
spectral 
data 

One set of random 
values for each 
wavelength 

 



19NRM02”RevStdLED” WP2 Measurement Uncertainty

  29 

4.3.2 Uncertainty of the blackbody spectral irradiance 

With the temperature of the blackbody-radiator known, its spectral irradiance at the sphere’s entrance 

port of the measurement setup can be calculated as follows: 

𝐸(𝜆, 𝑇஻஻  )  = 𝜖 · 𝑐𝑜𝑠 𝛼ଵ ·  𝑐𝑜𝑠 𝛼ଶ ·
஺ಳಳ ାఋ஺ಳಳ

ௗమ ·
௖భ

గ·௡మ·ఒఱ ·
ଵ

௘௫௣൬
೎మ

೙·ഊ·(೅ಳಳ శഃ೅ಳಳ శ೩೅ಳಳ )
൰ିଵ
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The quantities used in this equation are 

 
E(λ,TBB) Calculated spectral irradiance of the blackbody-radiator 

ϵ Emissivity of the blackbody radiator 

cos α1, cos α2 Alignment of the integrating sphere opening to the optical axis of the black body 

ABB, δABB Size and its drift of the black body opening aperture 

d Distance of the integrating sphere opening to the black body aperture 

λ Calculated wavelength 

TBB Radiometric temperature of the blackbody radiator  

δTBB Correction for blackbody temperature drift during measurement 

ΔTBB Correction for blackbody nonuniformity 

c1, c2 Planck constants 

n Refractive index of air 

The input quantities have the following uncertainty contributions and correlations for the calculated 

spectral irradiance: 

In equation 𝑈ி஻(𝑇஻஻) = 𝜖 · (𝑉௜௎ + 𝛿𝑉௜௎) · 𝑐𝑜𝑠 𝛼ଵ · 𝑐𝑜𝑠 𝛼ଶ ·
஺ಳಳାఋ஺ಳಳ

ௗಷವ
మ ∫൫𝑠(𝜆) + 𝛿𝑠(𝜆)൯

௖భ

గ·௡మ·ఒఱ

ଵ

௘௫௣൬
೎మ

೙·ഊ·೅ಳಳ
൰ିଵ

𝑑𝜆  

40 the blackbody temperature is correlated with the emissivity, the aperture and the aperture drift due 

to contamination. However the emissivity, the aperture and the aperture drift due to contamination are 

not correlated Therefore a joint multivariate Gaussian PDF should be considered along with a 4 x 4 

covariance matrix or correlation coefficient matrix. For the correlation coefficient matrix the values of the 

elements are: 

- The diagonal elements are equal to “1” 

- r(ϵ, ABB) = r(ϵ, δABB)=0 

- r(TBB, ϵ), r(TBB, ABB) and r(TBB, δABB) can be evaluated from the curve of equation 𝑈ி஻(𝑇஻஻) =

𝜖 · 𝑉௜௎ ·
஺ಳಳ

ௗಷವ
మ ∫ 𝑠(𝜆)

௖భ

గ·௡మ·ఒఱ

ଵ

௘௫௣൬
೎మ

೙·ഊ·೅ಳಳ
൰ିଵ

𝑑𝜆35 that determines the blackbody 

temperature TBB as a function of the filter radiometer signal UFB(TBB). A change Δϵ in ϵ, ΔABB in 

ABB or ΔδABB in δABB produces a change in UFB(TBB) and therefore a change in TBB (ΔTBB(ϵ), 

ΔTBB(ABB) or ΔTBB(δABB)) , and then the correlation coefficients are approximated by: 
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௥( ಳ்ಳ,ఢ))≈
ೠ൫೅ಳಳ൯∙ ೩ച

ೠ(ച)∙ ೩೅ಳಳ(ച)
 

௥( ಳ்ಳ,஺ಳಳ)≈
ೠ൫೅ಳಳ൯∙ ೩ಲಳಳ

ೠ൫ಲಳಳ൯∙ ೩೅ಳಳ൫ಲಳಳ൯

 ௥( ಳ்ಳ,ఋ஺ಳಳ))≈
ೠ൫೅ಳಳ൯∙ ೩ഃಲಳಳ

ೠ൫ഃಲಳಳ൯∙ ೩೅ಳಳ(ഃಲಳಳ)

    42 

 

 

 

 

 

During the calibration of a standard lamp, although the blackbody temperature is determined separately 

for each wavelength setting, a slight blackbody temperature drift δTBB might occur. It is considered to 

be zero with an uncertainty u(δTBB) uncorrelated for all wavelengths. Therefore, in Monte Carlo 

simulations, one has to use different sets of randomly drawn numbers for simulation of 

blackbody temperature drift δTBB for each wavelength of the spectral irradiance of the blackbody. 

The spectral radiance of the blackbody comes with a slight non-uniformity. The effect can be expressed 

by a temperature non-uniformity over the blackbody emission area and thus the correction for the 

blackbody non-uniformity ΔTBB is the average temperature correction. It is considered to be zero with 

an uncertainty of 0.15 K fully correlated for all wavelengths. Therefore, in Monte Carlo simulations, 

one has to use the same set of randomly drawn numbers for simulation of blackbody temperature 

drift δTBB for every wavelengths of the spectral irradiance of the blackbody. 

The two components cos α1 and cos α2 of the alignment of the blackbody and the entrance 

optics are considered uncorrelated and with a standard uncertainty u(cos α1) and u(cos α2)  . 

However each component is fully correlated for all wavelengths. Therefore, in Monte Carlo 

simulations, one has to use the same set of randomly drawn numbers for simulation of cos α1 for 

every wavelength of the spectral irradiance of the blackbody and to use the same set of randomly drawn 

numbers for simulation of cos α2 for every wavelength of the spectral irradiance of the blackbody. A 

Gaussian PDF is assigned to these uncertainty components. 

The uncertainty for the distance between blackbody opening and entrance optics d is split 

into two parts: 

- Uncertainty u(dcal) for the gauge calibration obtained from the calibration certificate 

- Uncertainty u(dmeas) for the measurement of the distance with the gauge 

These two contributions are uncorrelated and should be added before using the measurement 

model. Gaussian PDF are assigned to both uncertainties. Therefore, in Monte Carlo simulations, 
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one has to use a set of randomly drawn numbers for simulation of the dcal and dmeas and applied for 

every wavelength. 

The wavelength λ has no associated uncertainty because it is used as a nominal calculation parameter.  

A summary of the uncertainty components contributions for the blackbody spectral irradiance calculation 
is shown in Table 3.  
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Table 3: Uncertainty evaluation of the blackbody spectral irradiance 

Type of 
variable 

Uncertainty 
components 

PDF type Correlation Comments Effect on Monte Carlo 
simulation 

Column 
vector 

Blackbody 
temperature, 
Emissivity, 
Aperture size, 
Aperture 
contamination 

Gaussian 
multivariate 

Correlated Non-
spectrally 
dependant 

The multivariate 
drawing for the 
spectral output values 
has to be based on the 
provided 4x4 
covariance matrix 

Scalar Blackbody 
temperature 
drift 

Gaussian No Spectrally 
dependant 

Random values are 
generated once for  
and applied to all 
spectral data 

 Scalar Alignment of 
blackbody X 
direction  

Gaussian Fully 
correlated 

Non-
spectrally 
dependant 

Random values are 
generated once for  
and applied to all 
spectral data 

Scalar Alignment of 
blackbody Y 
direction  

Gaussian Fully 
correlated 

Non-
spectrally 
dependant 

Random values are 
generated once for  
and applied to all 
spectral data 

Scalar Distance of the 
blackbody to 
the entrance of 
integrating 
sphere 

Gaussian Fully 
correlated 

Non-
spectrally 
dependant 

Random values are 
generated once for  
and applied to all 
spectral data 

Using Monte Carlo simulation for the evaluation of the uncertainty allows to determine the covariance 

matrix of the spectral irradiance of the blackbody according to 3.4.3. 

4.3.3 Uncertainty of the spectral irradiance of the standard lamp 

The blackbody and the lamps under test, are measured in nearly identical optical configurations of the 

system in different successive measurement cycles covering each the whole wavelength range. It is 

recommended to have on the set-up means to evaluate the stability of the blackbody emission during 

each measurement cycle (monitor lamp for PTB set-up, monitor pyrometer for Cnam set-up).  

The spectral irradiance of the standard lamp EST(λ) is determined according to the following 

measurement model: 

 

𝐸ௌ்(𝜆) = 𝐸(𝜆, 𝑇஻஻) .
(௏ೄ೅ାఋ௏ೄ೅)

(௏ಳಳାఋ௏ಳಳ)
 .

(ீಳಳାఋீಳಳ)

(ீೄ೅ାఋீೄ೅)
. 𝐶(𝑑ௌ்) .  𝐶௪௟(𝜆) .  𝐶௕௪(𝜆) 43 
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Eλ,BB Calculated spectral irradiance of the blackbody-radiator 

VST, VBB Measured photosignal with the standard lamp or the blackbody 

δVST, δVBB Uncertainty on photosignal measurement due to DVM drift 

GST, GBB Amplifier gains for  standard lamp or blackbody 

δGST, δGBB Uncertainty on amplifier gain drift  

C(dST) Standard lamp distance error 

Cwl(λ) Wavelength calibration error 

Cbw(λ) Spectral bandwidth error 

 

The input quantities have the following uncertainty contributions and correlations for the standard lamp 

spectral irradiance. 

Spectral irradiance of the Blackbody 

This uncertainty is evaluated in 4.3.2. A Gaussian multivariate PDF is associated to this uncertainty. A 

covariance matrix is provided as well as the Monte Carlo simulations data for each spectral irradiance 

of the blackbody. These data can be used directly for uncertainty calculation for the spectral irradiance 

of the standard lamp 

Repeatability of the voltage readings of standard lamp. 

Voltage readings (signal – dark signal) is the average of n measurements from which the standard 

deviation is determined. A student’s t PDF is assigned to this uncertainty. In Monte Carlo simulation 

random numbers are generated for each wavelength. 

Repeatability of the voltage readings of blackbody radiator 

Voltage readings (signal – dark signal) is the average of n measurements from which the standard 

deviation is determined. A student’s t PDF is assigned to this uncertainty. In Monte Carlo simulation 

random numbers are generated for each wavelength. 

Calibration of the Digital Voltmeter 

This uncertainty is obtained from the calibration certificate of the Digital voltmeter for the voltage range 

that corresponds to the output of the photocurrent amplifier. A Gaussian PDF is assigned to this 

uncertainty. Photosignals for the standard lamp and the blackbody are fully correlated. In Monte Carlo 

simulation a set of random numbers are generated once and applied for all wavelengths and all voltage 

readings. 
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Drift of the calibration of the Digital Voltmeter 

This uncertainty is obtained from the analysis of the successive calibration certificates of the Digital 

voltmeter over time. A Uniform PDF is assigned to this uncertainty. The drift is accounted for the 

photosignals of the standard lamp and the blackbody that are fully correlated. In Monte Carlo simulation 

a set of random numbers are generated once and applied for all wavelengths and all voltage readings. 

Calibration of the photocurrent amplifier GST for the standard lamp (correlation) 

This uncertainty u(GST) is obtained from the calibration certificate of the current/voltage amplifier 

associated to the blackbody radiator. This uncertainty depends on the signal level. All measurements 

using the same amplifier setting are fully correlated. 

In Monte Carlo simulations, one has to use the same randomly drawn numbers for simulation of the 

photocurrent amplification for equal amplifier settings. Different randomly drawn numbers should be 

generated for different amplifier settings. 

Drift of the gain of the photocurrent amplifier for standard lamp 

This uncertainty is obtained from the analysis of the successive calibration certificates of the current 

amplifier over time. A Gaussian PDF is assigned to this uncertainty. The drift is accounted for the 

photosignals of the standard lamp for all wavelengths that are measured with the same gain setting that 

are fully correlated. In Monte Carlo simulation the same set of random numbers are generated once and 

applied to all wavelengths that are measured with the same gain setting. 

Calibration of the photocurrent amplifier GBB for the blackbody radiator (correlation) 

This uncertainty u(GBB) is obtained from the calibration certificate of the current/voltage amplifier 

associated to the blackbody radiator. This uncertainty depends on the signal level. All measurements 

using the same amplifier setting are fully correlated. 

In Monte Carlo simulations, one has to use the same randomly drawn numbers for simulation of the 

photocurrent amplification for equal amplifier settings. Different randomly drawn numbers should be 

generated for different amplifier settings. 

Drift of the gain of the photocurrent amplifier for blackbody radiator 

This uncertainty is obtained from the analysis of the successive calibration certificates of the current 

amplifier over time. A Gaussian PDF is assigned to this uncertainty. The drift is accounted for the 

photosignals of the blackbody radiator for all wavelengths that are measured with the same gain setting 

that are fully correlated. In Monte Carlo simulation the same set of random numbers are generated once 

and applied to all wavelengths that are measured with the same gain setting. 

Uncertainty due to wavelength measurement uncertainty (correlation) 

This uncertainty is evaluated similarly as the uncertainty evaluation for the spectral responsivity of a 

detector in part 3.4.1.  

As the correction factor Cwl is in the measurement model it is expected to be close to unity, its uncertainty 

u(Cwl) can be estimated by: 
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𝑢(𝐶௪௟) = 1 − 𝐶௪௟ = 1 −
ଵି 

ಶೄ೅
ᇲ (ഊ)

ಶೄ೅(ഊ)
 ௨(ఒ)

ଵି 
ಶᇲ൫ഊ,೅ಳಳ൯

ಶ൫ഊ,೅ಳಳ൯
 ௨(ఒ)

 44 

where 

u(cwl(λ)) Contribution of the wavelength uncertainty for the spectral irradiance 

u(λ)  Uncertainty of the measured wavelength 

E’ST(λ) First derivative of the spectral irradiance of standard lamp 

E’(λ,TBB) First derivative of the spectral irradiance of the blackbody 

EST(λ)  Spectral irradiance of standard lamp 

E(λ,TBB) Spectral irradiance of the blackbody 

The correlation of wavelength uncertainty has three contributions: 

- Uncertainty due to the calibration of the wavelength scale. This contribution is partially 

correlated (see CIE 198-SP1.4:2011). For Monte Carlo simulations, one has to use the 

multivariate distribution with the correlation coefficient matrix defined in CIE 198-SP1.4.  

- Uncertainty on the ambient temperature that leads to a fully correlated contribution to spectral 

data. For Monte Carlo simulations, one has to use the same set of randomly drawn numbers 

for simulation of the wavelength variation for every wavelength setting if the spectral responsivity 

of the detector is to be specified for more than one wavelength. 

- Uncertainty due to a shift of the wavelength scale (especially for scanning instruments) which 

is fully positive or negative correlated depending on the slope of the spectral responsivity. For 

Monte Carlo simulations, one has to use the same set of randomly drawn numbers for 

simulation of the wavelength variation for every wavelength setting if the spectral responsivity 

of the detector is to be specified for more than one wavelength. 

 

Uncertainty due to spectral bandwidth 

This uncertainty is evaluated similarly as the uncertainty evaluation for the spectral responsivity of a 

detector in part 3.4.1.  

𝑢൫𝑐௕௪(𝜆)൯ =
ଶ⋅൫௕(ఒ)ି௔(ఒ)൯⋅௱ఒ⋅௨(௱ఒ)

൫ଵି௱ఒమ⋅௕(ఒ)൯
మ   45 

where: 
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𝑎(𝜆) =
ଵ

ଵଶ
⋅

𝐸ᇱᇱ(𝜆, 𝑇஻஻)
𝐸(𝜆, 𝑇஻஻)൘   46 

𝑏(𝜆) =
ଵ

ଵଶ
⋅

𝐸ௌ்
ᇱᇱ (𝜆)

𝐸ௌ்(𝜆)൘   47 

 

For Monte Carlo simulation one has to consider two cases: 

- The wavelengths that are generated with the same combination of grating and slit width 

of the monochromator. The bandwidth corrections are fully correlated. The off-diagonal 

elements of the correlation coefficients matrix are equal to “1”. 

- For wavelengths that are generated  with combinations that differ from the others by the grating 

or slit width, the corresponding bandwidth corrections are uncorrelated. The off-diagonal 

elements of the correlation coefficients matrix are equal to “0”. 

Uncertainty due to distance error (correlation) 

The spectral irradiance of the standard lamp is measured at a given distance. The correction factor for 

distance offsets is set to unity with an uncertainty u(C(dST)). 

In Monte Carlo simulations, one has to use the same set of random numbers for all wavelengths of 

the spectral irradiance of the standard lamp. 

 

A summary of the uncertainty components contributions of the standard lamp spectral irradiance 

measurement is shown in Table 4. 
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Table 4: Uncertainty evaluation of the spectral irradiance of the standard lamp 

Input data Uncertainty 
components 

PDF type Correlation Comments Effect on Monte 
Carlo simulation 

Covariance 
matrix or 
data from 
simulation 

Blackbody 
spectral 
irradiance 

Multivariate Covariance 
matrix 

Spectrally 
dependant 

Gaussian Multivariate 
based on  the provided 
correlation coefficient 
matrix or use of the 
simulation data for the 
blackbody uncertainty 
evaluation 

Matrix 
column 

Signal 
readings of 
black body 

Student t No Spectrally 
dependant 

Random values 
generated for each 
wavelength 

Matrix 
column 

Signal 
readings of 
standard lamp 

Student t No Spectrally 
dependant 

Random values 
generated for each 
wavelength 

Column of 
amplifier 
settings  

Blackbody 
amplifier gain 
calibration 

Gaussian 
Multivariate 

Fully 
correlated 
for equal 
settings 
(simple 
correlation 
matrix) 

Partially 
spectrally 
dependant 

If for a given 
wavelength a same 
gain is used for 
blackbody then 
correlation should be 
taken into account for 
those signals 

Column of 
amplifier 
drift for 
gain 
settings  

Drift of 
amplifier gain 
for blackbody 

Gaussian 
Multivariate 

Fully 
correlated 
for equal 
settings 
(simple 
correlation 
matrix) 

Partially 
spectrally 
dependant 

If for a given 
wavelength a same 
gain is used for the 
blackbody then 
correlation should be 
taken into account for 
those signals 

Column of 
amplifier 
settings  

Standard lamp 
gain 
calibration 

Gaussian 
Multivariate 

Fully 
correlated 
for equal 
settings 
(simple 
correlation 
matrix) 

Partially 
spectrally 
dependant 

If for a given 
wavelength a same 
gain is used for the 
standard lamp then 
correlation should be 
taken into account for 
those signals 

Column of 
amplifier 
drift for 
gain 
settings  

Drift of 
amplifier gain 
for blackbody 

Gaussian 
Multivariate 

Fully 
correlated 
for equal 
settings 
(simple 
correlation 
matrix) 

Partially 
spectrally 
dependant 

If for a given 
wavelength a same 
gain is used for the 
standard lamp then 
correlation should be 
taken into account for 
those signals 
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Column 
vector for 
spectral 
data 
points 

Calibration of 
the 
wavelength 
scale, cwl 

Multivariate Partially 
correlated 
(CIE 198-
SP1.4:2011) 

Spectrally 
dependant 

Determination of the 
correlation 
coefficients and the 
associated 
correlation matrix.  

Column 
vector for 
spectral 
data 
points 

Wavelength 
scale 
temperature 
dependent, 
cwl, T 

Multivariate Fully 
correlated 

Spectrally 
dependant 

Random numbers 
can be generated 
once and applied to 
all wavelengths 
taking into account 
the uncertainty 
associated to each 
wavelengths  

Column 
vector for 
spectral 
data 
points 

Source 
spectral 
bandwidth, 
cbw 

Multivariate Fully 
correlated 

Partially 
spectrally 
dependant 

Correlation to be 
taken into account for 
groups of 
wavelengths with the 
same spectral 
bandwidth setting 

Scalar Distance, cdist Multivariate Fully 
correlated 

Non-
spectrally 
dependant 

This PDF is 
generated once and 
applied to all 
wavelengths 

 

Using Monte Carlo simulation for the evaluation of the uncertainty on the spectral irradiance of the 

standard lamp allows to determine covariance matrix and/or correlation matrix using the same data 

analysis as described in paragraph 3.4.3. 

NOTE 2: The data generated for the uncertainty evaluation of the black body temperature (4.3.1) and 

the spectral irradiance of the black body (4.3.2) can be used for the uncertainty evaluation of the 

standard lamp irradiance calibration.  

 

NOTE 3: Spectral irradiance data are often interpolated with functions such as cubic splines, 

polynomials or modified Planck’s radiation law. This introduces correlation in the resulting spectral 

irradiance. Severity of correlations is directly proportional to the data interval of the original data. The 

most extreme case is the use of filter radiometers to perform the calibration, where data intervals can 

be tens of nanometers. Correlation analysis of interpolation is described e.g. in [11]. 
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