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Scope 
In the following, based on a simple model of a photometric measurement, it is shown how corrections 

or characterisation can be performed and added to the model and how the measurement uncertainty 

of the resulting quantity can be determined. 

Reference is made to the notation and models described in the normative document (CIE 198:2011, 

2011), hereafter called CIE198, and its supplements (CIE198-SP1.3:2011, 2010; CIE198-SP1.1:2011, 

2011; CIE198-SP1.2:2011, 2011; CIE198-SP1.4:2011, 2011; CIE 198-SP2:2018, 2018) hereafter referred 

to as CIE198-SP1 and CIE198-SP2. 

The knowledge of the documents (JCGM 100:2008, 2008; JCGM 101:2011, 2011; JCGM 102:2011, 

2011) and (JCGM106:2020, 2020) hereafter called GUM, GUMS1, GUMS2 and GUMS6 and the CIE198, 

incl. supplements, is assumed in broad outline. 

The general approach based on Monte Carlo Simulations (MCS, GUMS1) is used to determine the 

measurement uncertainty so that no further explanations (partial derivatives, etc.), as used in the orig-

inal GUM, are necessary here after the modelling and determining the model parameters. 

Introduction 
Measurement uncertainties play a key role in establishing comparability and metrological traceability 

of measurement results. Stating measurement uncertainties along with measurement results is there-

fore not only considered good practice but is most often a normative requirement of many measure-

ment or application standards. 

This good practice guide was written as part of the EMPIR project 19NRM01 RevStdLED to assist users 

in photometry in setting up measurement uncertainty calculations for their applications. The docu-

ment focuses on practical guidance for situations where the available information about the measuring 

instrument is used and, if necessary, further estimations by an additional application-relevant charac-

terisation are performed to allow parametrization of the measurement process, where the instrument 

is part of the measurement setup, to determine the measurement uncertainties. This is often the case 

for users of commercial measurement instruments, where only limited information about the inner 

workings of the instruments, especially the kind of applied corrections for significant internal and ex-

ternal influences, is available from the manufacturer and the user can at most perform a limited num-

ber of simple characterisation measurements. In such situations, the methods and models described 

in many other existing documents, especially from the CIE 198 series, can be difficult to apply, which 

largely motivated the writing of this document. 

The objective of this document is to provide practical guidance for the estimation of measurement 

uncertainties for photometric measurements using largely effective models based on typical infor-

mation available from calibration-/test certificates, data sheets and simple characterisation methods. 

The document’s focus is on measurements with Imaging Luminance Measurement Devices (ILMDs), 

but much of the provided information can be readily applied also to other photometric measurements. 

The target audience are users performing their measurements with calibrated commercial measure-

ment instruments using the readings of their instruments mostly “as is”, that is without applying ex-

tensive characterisations to implement corrections beyond that already internally provided by the 

manufacturers and covered by an uncertainty considering the critical contributions, cf. Part 1 of this 

GPG. Characterisation effort is limited to finding residual deviations of the corrected signals that might 

have application-relevant effects. 
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The provided information will also be useful for users working at calibration labs or NMIs. Methods to 

determine corrections to measurement results and their associated uncertainties are not covered in 

full detail by this document (cf. Part 1 of this GPG), as this would in many cases require to go beyond 

the described the effective models and to acquire more detailed information about the details of the 

processes inside a measurement instrument leading to the indicated measurement result (i.e. reading 

from the ILMD) and the luminance distribution to be measured (i.e. the lamp). Applying corrections 

that go beyond these require to parametrize a quite complex measurement model, i.e. as defined by 

an equivalent circuit of the pixel and signal processing block diagram. This is especially also true where 

corrections implemented by the manufacturer (e.g. a look up table rather than a parametrized low 

order function) cannot be bypassed to fully cover the parameter range or perform reverse engineering. 

Consequently, also the process of instrument adjustment, calibration and estimation of the associated 

uncertainties will not be covered in full detail.  

It should also be noted that the required effort to determine the uncertainty also depends on the 

required quality of the measurement, i.e. not every contribution has to be taken into account if only 

very low requirements are placed on the uncertainty. Critical contributions from the ILMD itself and 

their correlation between different measurements are identified in Part 1 of this GPG. 

This document (Part 2 of the GPG) describes and promotes measurement uncertainty evaluations by 

Monte Carlo methods. This approach is not only considered the most general and conceptually rigor-

ous one, but, with nowadays freely available software tools, it is often also more easily implemented 

than a standard GUM calculation. Still, the document assumes that the reader is familiar with the basic 

concepts of measurement uncertainty and the standard GUM methods for measurement uncertainty 

evaluation. 

 

This document is organised as follows: 

Chapter 1 introduces the terminology and notation conventions usually used in measurement uncer-

tainty calculations and photometric measurements. A very short introduction on the general concept 

of measurement uncertainty and standard methods for its evaluation is given. 

Chapter 2 introduces a general model of evaluation that is the starting point for measurement uncer-

tainty calculation. Based on this model and the outset of this document the workflow and governing 

principles of estimating measurement uncertainties is described. 

Chapter 3 provides general guidance for identifying potential uncertainty contributions, setting up a 

corresponding uncertainty budget and establishing a hierarchy of uncertainty contribution that allows 

to select significant contributions that will have to be characterized in detail. 

Chapter 4 introduces describes how the standard measurement uncertainty can be derived from the 

model of evaluation and the individual contributions from Chapter 4 using Monte Carlo methods. 
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1 General Notation 
The notation of the quantities and models follows the CIE198 as closely as possible. Where possible, 

direct reference is also made to the corresponding chapters. 

According to CIE198, we can model a photometric measurement of a number of 𝑘 = 1…𝑁 physical 

output quantities 𝑌𝑘 represented by a number of 𝑙 = 1…𝑛 output values 𝑦𝑘,𝑙 based on the measure-

ment of 𝑖 = 1…𝑀 physical input quantities 𝑋𝑖  provided by j = 1…𝑚 input values 𝑥𝑖,𝑗 using a general 

model: 

(𝑌1, … , 𝑌𝑁) = 𝐹(𝑋,… , 𝑋𝑀) (1) 

 

 

Figure 1: General modelling of the measurement by a model of evaluation 

It is also possible to describe this modelling in more general terms by using vector the notation 𝑿 =

(𝑋1, … , 𝑋𝑀) and 𝒀 = (𝑌1, … , 𝑌𝑁). In this case, input and output quantities are described by 𝑭(𝑿,𝒀) =

𝟎.  

To measure a model input quantity 𝑋𝑖  we typically collect at first multiple readings 𝑥𝑖,𝑗
′ of the input 

quantity. Based on the multiple readings and possibly sometimes also on the basis of internal adjust-

ment factors, we calculate the input quantity 𝑋𝑖
′. However, if e.g. the environmental condition of the 

measurement was different from the absolute calibration condition, we have to correct 𝑋𝑖
′ to get the 

input quantity 𝑋𝑖  we need in the model of evaluation for the measurement. Therefore, the quantity 𝑋𝑖  

denotes the expected input quantity. 

𝑋𝑖 = 𝑐𝑖 ∙ 𝑋𝑖
′ (2) 

The use of the quantities with and without prime is used as a general concept in this document: 

Primed quantities always represent the value of a quantity/indication without correction, as read (for 

measuring instruments) or as realised (for standards, i.e. under the currently given conditions). Quan-

tities without prime represent corrected measured values (for measuring instruments) or reference 
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values at calibration/reference conditions (for standards or DUTs). The details are explained and ap-

plied step by step below. 

According to GUM, the true value of a measured quantity is never known. The maximum knowledge 

we may get about a quantity, instead, is a distribution of measurement values, e.g. 𝑥𝑖,𝑗, around an 

arithmetic mean value, 𝑥�̅� , where the distribution of measurement values is characterized by the 

standard deviation, 𝑠(𝑥𝑖,𝑗), of measured values. A different set of measurement data will typically re-

sult in a different arithmetic mean value. Therefore, the associated uncertainty is defined as the ex-

perimental standard deviation of the mean value, 𝑢(𝑥𝑖) = 𝑠(𝑥�̅�). 

Also, in case of a measurement simulation, we start with the known uncertainty of an input quantity 

and its arithmetic mean value. Within the framework of the Monte Carlo simulation of a measurement, 

we generate individual measured values that deviate from the mean value by random amounts that 

lie within the measurement uncertainty interval of the measurand. However, if we simulate a meas-

urement, we are able to draw (i.e. to generate) as much simulated random measurement values, 𝑥r, 

as we want. Therefore, the arithmetic mean value of a real measurement turns into an expectation 

value of a probability distribution, 𝒢(𝜇, 𝜎(𝑥)) of possible (measurement) values with an expectation 

value, 𝜇 =̂  𝑥�̅� , and a standard deviation, 𝜎(𝑥) =̂ 𝑢(𝑥𝑖). The important difference between real meas-

urements and simulated ones is, that the shape of the distribution of a real measurement is given by 

the distribution of the measured values while the distribution in a Monte Carlo simulation needs to be 

stated in advance based on the knowledge of the behaviour of the measurement process of the re-

spective input quantity. 

Further general notations used in this document: 

𝑇a ambient temperature 

𝑇aR 

reference ambient temperature (nominal value) 

• The subscript “R”1 will always be used to state reference conditions / 
nominal values. 

• Nominal values have “A zero” uncertainty. (CIE198-SP1, 1.4). 

Δ𝑇a = 𝑇a − 𝑇aR 

temperature difference 

• All differences are stated as the difference of the current value minus 
the reference value. 

αT,𝑋 temperature coefficient of the quantity 𝑋 

αT,𝑋,rel relative temperature coefficient of the quantity 𝑋 

𝒩(𝑥, 𝑢(𝑥)) 
Normal distribution with expectation value 𝑥 and standard deviation 𝑢(𝑥) 

A random number for the MCS will be named 𝑥r ∼ 𝒩(𝑥, 𝑢(𝑥)) 

𝒰(𝑥,Δx) 
Uniform distribution over the interval [𝑥 − Δ𝑥, 𝑥 + Δ𝑥] 
A random number for the MCS will be named 𝑥r ∼ 𝒰(𝑥, Δ𝑥) 

2 Model evaluation 
Measurement task:  

An LMD/ILMD is calibrated with a luminance standard having a spectral distribution (SD) similar to CIE 

standard illuminant A. In the second step, the luminance of another luminance source, e.g. with the 

SD of a phosphor-type white LED, is determined. In this respect, the ILMD is an indicating device that 

needs to be linear and spectrally matched. (Type of calibration: Lamp calibrates lamp) 

 
1 This is different to CIE198, where the subscript “0” was used. The subscript “0” is used for the dark signal in this 
document. 
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Following an idea by Georg Sauter (Sauter, 2012), published with examples and details in (Krüger et 

al., 2014), the measurement uncertainty budget of a measurement can be summarised very clearly in 

the following way and then refined step by step.  

Consistent to Part 1 of the GPG, this document is written from a "luminance/photometric signal" in 

contrast to a "count/raw signal" perspective. This is a so-called "Black Box" approach for the complete 

device with respect to its indicated output quantity, meaning that we use measurement instruments 

with proper internal adjustment and model only minor deviations and imperfections rather than the 

underlaying signal processing which is covered by the estimate for critical uncertainty contributions. 

On the other hand, this approach means that we can usually not use equivalent models motivated by 

the physical implementation, but we only have to model the observations by mathematical functions 

that are approximating the effective characteristic. 

The starting point is the model equation (noted here without the restriction of generality for luminance 

or luminance distributions measured with LMD’s (luminance measuring devices) or ILMD’s), respec-

tively: 

𝐿Z
′

𝐿C
′
=
𝑌Z
𝑌C

 
( 3) 

 

 𝐿𝑍
′ = 𝐿′C ∙

𝑌Z
𝑌C

  

𝐿𝑍 =
𝑐𝐿,𝑍
𝑐𝐿,𝐶

𝐿C ∙
𝑐Y,Z𝑌

′
Z

𝑐Y,C𝑌
′
C
  

Where 

𝐿Z luminance (distribution) of the light source to be measured (DUT) 
𝐿′C indicated luminance (distribution) of the luminance standard for calibration under the 

given condition  
𝐿C Luminance (distribution) of the luminance standard (Calibration certificate) 
𝑌Z Corrected measured quantity for the luminance (distribution) of the DUT 
𝑌C Corrected measured quantity for the luminance (distribution) of the luminance standard 
𝑌′Z indicated quantity for the luminance (distribution) of the DUT 
𝑌′C indicated quantity for the luminance (distribution) of the luminance standard 

𝑐L,Z, 𝑐L,C, 
𝑐Y,Z, 𝑐Y,C 

Correction factors provided by the manufacturer or derived from characterising meas-
urements 

 

The approach is explained step by step in deriving the individual model components. This model equa-

tion describes the absolute calibration of the measuring device and the measurement as a whole. It 

should also be noted that in nearly all cases, the measured values of the ILMDs are already provided 

as luminance values (readings). However, the physical measurement process with ILMDs is typically a 

counting process of collected photons and extensive signal processing which residual errors and re-

lated critical uncertainty contributions are considered in Part 1 of this GPG. This becomes especially 

important if linearity properties and their contributions to the MU are discussed. However, count val-

ues are often hidden in the manufacturer’s software and not directly accessible by the user. How to 

deal with linearity will be shown in Chapter 4.7. The correction factors determined and provided by 

the manufacturer are typically implemented in the software of the measurement devices. In this case, 

the factors appear in the model of the user as unity with a given uncertainty, which may still depend 

on the application. 
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Remark: The modelling could also be done by describing the physical processes in a measuring de-

vice/light source by an equivalent circuit and a block diagram. However, this is increasingly problematic 

(also for the manufacturers) because not enough information about the pixel sensor is provided for 

this, and the measurement systems are becoming more complex. The BlackBox approach is probably 

the only method of describing current measuring systems and light sources. But even with this Black-

Box approach, it is possible to model different levels so that, for example, the manufacturer can access 

further internal data that is no longer made available to the user in his modelling. 

 

 

Figure 2: Detailed description of the modelling 

 

2.1 Modelling DUT (source) 
The following model can be used as a general model for measuring the light source (DUT). Whereby 

the Luminance 𝐿Z under defined boundary conditions is to be determined from the measured lumi-

nance 𝐿Z
‘  under the current measurement conditions by multiplication with a correction factor. 

'

Z Z L,ZL L c=  (4) 

This also applies analogously to the other variables from equation ( 3). 

The correction factor can be broken down in detail step by step. 

𝑐𝐿,𝑍 = (1 − α𝑇,ZΔ𝑇Z − αϑ,ZΔϑZ − α𝐽,Z𝛥𝐽Z − γ𝑈,Z − γ𝑡,Z…) (5) 

The relative sensitivity coefficients are described with 𝛼, where the first letter of the index describes 

the variable to be changed, and the second letter represents the object (e.g. Z for the DUT, C for the 

calibration light source, etc.). The sensitivity is valid for the measurement quantity we observe, which 

is the luminance in this example. A sensitivity is connected to a second parameter, describing the 

change of the influencing variable. Example α𝑇,ZΔ𝑇Z: In this case α𝑇,Z is the sensitivity in 1/K describing 

the relative luminance change for every degree change of the reference temperature. And the Δ𝑇Z is 

describing that temperature change (or a possible range of temperatures with a random variable). 
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The values in the models depicted with γ represent model parameters without an additional scaling 

like temporal noise or uniformity. 

𝑇Z The temperature of the DUT (depending on the measurement, the ambient temperature 𝑇a 
or the temperature at a specific point 𝑇𝑝,Z on the enclosure is relevant here). 

ΔTZ Difference to the reference Temperature Δ𝑇Z = 𝑇Z − 𝑇ZR 
α𝑇,Z Relative sensitivity for the luminance change with respect to the temperature change of the 

DUT 
αϑ,Z Relative sensitivity for luminance change with respect to angular dependence of the lumi-

nance 
ΔϑZ Angular difference to the normal view 
γ𝑈,Z Non-uniformity of the DUT surface (e.g. if a different spot size with respect to the calibration 

condition is measured; zero degree) 
γ𝑡,Z Stability of the DUT after burn-in (remaining instability) 
α𝐽,Z Sensitivity regarding the current setting of the device (e.g. if an external source is needed) 

𝛥𝐽Z Difference to the reference current Δ𝐽Z = 𝐽Z − 𝐽ZR, (e.g. if an external source is needed) 
 

Further influencing variables can be added here depending on their relevance. In the very first step, 

one can start with cL,Z = 1 and just estimate its uncertainty by a value covering typical characteristics.   

The term noise is used here in a very general way. First of all, of course, for the description of quantities 

whose repeated observation allows to infer mean value, standard deviation and possibly the probabil-

ity distribution function (GUM Type A). But then also for quantities about which e.g. limits are known 

from other sources or other information is available (GUM Type B). 

For the modelling to be done here via MCS, however, the difference in the treatment during the mod-

elling is not relevant, so that here both types of quantities are modelled equivalently. In the first case, 

normal distributed random variables are modelled. In the second case, one often meets with equally 

distributed random variables, e.g. if only the range is known. Furthermore, it does not matter for the 

modelling whether there is really a random process behind it or whether it is a systematic devia-

tion/variation. 

 

2.2 Modelling the luminance standard source 
The luminance standard can generally be described similarly. However, more properties are usually 

known for this light source, so the modelling can be somewhat more complex: 

𝐿C = 𝐿
′
C ∙ 𝑐𝐿,𝐶  

𝑐L,C = (1 − α𝑇,CΔ𝑇C − αϑ,ZΔϑZ − α𝑝,C𝛥𝑝C − γ𝑈,C − γ𝑡,C…) 
(6) 

 

αp,C Relative ageing coefficient of the luminance value 

Δ𝑝C Accumulated time of operation since the last calibration (together with the ageing coefficient 
αp,C, the ageing of the calibration source luminance value caused by its operation can be cor-

rected here). 
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2.3 Modelling of the measurement 
The determination of the luminance values 𝑌Z and 𝑌C (the actual measurements) can be described 

similarly, whereby the corrections and especially their uncertainties are to be applied and respected 

depending on the measurement technique used for the application. 

𝑌𝑍 = 𝑌𝑍
′  𝑐Y,Z 

𝑌𝐶 = 𝑌𝐶
′  𝑐Y,C 

(7) 

The correction factors can be modelled as in (5) and (6) with extension based on focus, linearity and 

size of source properties. 

𝑐Y,Z = (1 − α𝑇,CΔ𝑇C − γ𝑈,Y − γ𝑡,C  −  𝐹𝑜𝑐𝑢𝑠  −  𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 −  𝑆𝑖𝑧𝑒 𝑜𝑓 𝑆𝑜𝑢𝑟𝑐𝑒 − … ) 

𝑐Y,C = (1 − α𝑇,CΔ𝑇C − γ𝑈,Y − γ𝑡,C  −  𝐹𝑜𝑐𝑢𝑠  −  𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 −  𝑆𝑖𝑧𝑒 𝑜𝑓 𝑆𝑜𝑢𝑟𝑐𝑒 −⋯) 

Since the measurement of the DUT and the reference light source is carried out with the same meas-

uring instruments and usually under the same or at least very similar conditions, some influences of 

the measuring instrument and the actual measurement conditions (if measured concurrently) may 

cancel each other out. Therefore, during numerical modelling, special care must be taken to ensure 

that logically related measured values (e.g. ambient temperatures) are modelled with the same ran-

dom variables to represent these correlations adequately. 

2.4 Modelling interaction 
In addition to modelling the measurement and the corrections described in the previous sections, the 

interaction between the measurement system and the measured object must also be described. Here 

the spectral matching and the influence of stray light are essential to be considered, whereby “stray 

light” is usually modelled as an offset (not viewed further here as covered in Part 1 of the GPG). 

As described by (Krüger et al., 2022), the spectral mismatch correction factor 𝐹(SC(λ), SZ(λ)) for a 

photometer calibrated with a relative spectral distribution (SD) SC(λ) measuring a different relative SD 

of the DUT SZ(λ) can be written as: 

𝐹C,Z = 𝐹(𝑆C(λ), 𝑆Z(λ)) =
∫ 𝑆Z(λ)𝑉(λ)𝑑λ
830 nm

360 nm

∫ 𝑆Z(λ)𝑠rel,C(λ)𝑑λ
λ𝑚𝑎𝑥

λ𝑚𝑖𝑛

 (8) 

Attention: Compared to other equations (e.g. in (ISO/CIE 19476:2014, 2014)) the normalised spectral 

responsivity 𝑠rel,C(λ) here is calculated from the relative spectral responsivity 𝑠rel(λ) using a weighting 

with the relative SD of the calibration light source to make the evaluation much easier. 

𝑠rel,C(𝜆) =
∫ 𝑆C(𝜆)𝑉(𝜆)d𝜆
830 nm

360 nm

∫ 𝑆C(𝜆)𝑠rel(𝜆)d𝜆
𝜆max
𝜆min

𝑠rel(𝜆) (9) 

2.5 Summary 
The individual modelling steps of the previous sections can then be summarised as follows: 

 

𝐿Z = c ∙ 𝐿C ∙
𝑌′Z
𝑌′C

     with     c =  
𝑐L,Z
𝑐L,C

𝑐Y,Z
𝑐Y,C

𝐹C,Z 
(10) 
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This means one gets the luminance 𝐿Z of the DUT using the luminance of the calibration source 𝐿C 

(certificate of calibration), the measurement values (readings) during the calibration/adjustment 𝑌C
‘  

and the measurement values 𝑌Z
‘  at the time of the DUT measurement, applying a couple of corrections. 

Using a different notation introducing an adjustment factor2 𝑘Y: 

𝑘Y = 
𝐿C
𝑌′C

∙
1

𝑐L,𝐶 ∙ 𝑐Y,𝐶
 (11) 

𝐿z = 𝑐𝑆 ∙ 𝑘𝑌 ∙ 𝑌
′
Z     𝑤𝑖𝑡ℎ    𝑐𝑆 = 𝑐L,Z𝑐Y,Z𝐹𝐶,𝑍 (12) 

In this case, the calibration/adjustment of the measurement device can be separated from the DUT 

measurement. However, one should consider the correlations (e.g. using the same thermometer) 

which make it reasonable to set up a joint model for calibration and measurement whenever possible. 

However, all correction factors and adjustment factors as well as the reading of the ILMD comes with 

an uncertainty, which need to be determined to finally calculate the combined uncertainty of the 

measurement process. 

Summary of overall model 

   𝐿Z =
𝑐L,Z

𝑐L,C

𝑐Y,Z

𝑐Y,C
𝐹C,Z ∙ 𝐿C ∙

𝑌′Z

𝑌′C
 

with 

𝑐𝐿,𝑍 = (1 − α𝑇,ZΔ𝑇Z − αϑ,ZΔϑZ − α𝐽,Z𝛥𝐽Z − γ𝑈,Z − γ𝑡,Z…) 

𝑐L,C = (1 − α𝑇,CΔ𝑇C − αϑ,ZΔϑZ − α𝑝,C𝛥𝑝C − γ𝑈,C − γ𝑡,C…) 

𝑐Y,Z = (1 − α𝑇,CΔ𝑇C − γ𝑈,Y − γ𝑡,C  −  𝐹𝑜𝑐𝑢𝑠  −  𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 −  𝑆𝑖𝑧𝑒 𝑜𝑓 𝑆𝑜𝑢𝑟𝑐𝑒 − … ) 

𝑐Y,C = (1 − α𝑇,CΔ𝑇C − γ𝑈,Y − γ𝑡,C  −  𝐹𝑜𝑐𝑢𝑠  −  𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 −  𝑆𝑖𝑧𝑒 𝑜𝑓 𝑆𝑜𝑢𝑟𝑐𝑒 −⋯) 

𝐹C,Z = (1 − 𝑘 𝑓1
′) 

3 Collecting information 
In the following chapters, we will collect the information we need for the modelling and to derive the 

components making up the correction factors 𝑐L,𝐶,𝑐Y,𝐶  𝑎𝑛𝑑 𝑐Y,𝑍, 𝑐Y,Z  of the measuring device and the 

sources step by step. 

The information we need for the modelling we can get from (the order does not represent an assess-

ment of importance): 

• Calibration sheets and the calibration history (e.g. of a luminance standard) 

• Literature as well as specifications (e.g. as issued by the manufacturer) 

• Characterisation of measurement devices used to perform the measurement  

• Quality indices of luminance meter used 

• Measurements 

 
2 Attention: The adjustment factor is sometimes also defined in the reciprocal version. The version used in this 
document facilitates its application in the correction, which is then really a factor. 
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According to (ISO/CIE 19476:2014, 2014; CIE244:2021, 2021), several quality indices are defined for 

LMDs and ILMDs. These quality indices have been developed to assign characteristic values to pho-

tometers including LMDs and ILMDs to allow users to identify the capabilities of such devices under 

specific measurement conditions. Some of these quality indices can be used to estimate the uncer-

tainty contribution, but they cannot be used for correction. In the following, this will be mentioned for 

every possible contribution. 

3.1 Noise and stabilisation 
For the description of the remaining instability γ𝑡 (see equations 5 and 6), a distinction must be made 

between effects belonging to the light sources and those belonging to the measuring devices. 

3.1.1 Light source including power supply 
A light source has a slight permanent drift or instability after a specific burn-in time. The burn-in time 

was therefore defined in CIES025 4.4.1.: 

“Specific requirement: The DUT shall be operated for at least 30 min and it is considered as stable if the 

relative difference of maximum and minimum readings of light output and electrical power observed 

over the last 15 minutes is less than 0,5 % of the minimum reading. If the DUT is pre-burned, it does not 

need to be operated for 30 min, and it is considered stable if the readings of the last 15 min meet above 

requirement.” 

However, no distinction is made here between noise (random instability after reaching a stable oper-

ating point) and a small remaining drift. 

It is therefore recommended to examine the light to be used in detail. For luminance standards, this 

should be self-evident. With unknown DUTs, the situation is different.  

In this guide, a relative instability factor is used to model the residual instability γ𝑡,C or γ𝑡,Z. To handle 

it in the context of MCS, a random variable γ𝑡,C
r ∼ 𝒩(0, σ𝑡,C)  is introduced with an expectation value 

of zero and the standard deviation σ𝑡,C. 

3.1.2 Measurement device 
The situation is similar for the measuring instruments. Here, too, a specific warm-up time must be 

waited for before measurements can be started. But even then, you do not get the same measured 

value for every measure, but different measured values that fluctuate around an average value. 

Care must be taken to ensure that the scatter of the measured values is sufficiently large and that one 

is not limited by the quantisation noise (Sripad and Snyder, 1977). In the following, the quantisation 

step is denoted as ΔADC in units of the evaluated Quantity [𝑌]. 

Another point is to pay attention to temporal light modulation. Here, the frequency bandwidth settings 

in the measuring devices or the selected integration times may have to be adjusted accordingly. This 

can be checked by recording a series of measured values in close succession and examining them for 

mean value, standard deviation and (low/high frequency) fluctuations. 

3.1.2.1 LMD 

For an LMD, 𝑁 measured values 𝑌𝑖  are to be recorded and the mean value �̅� and experimental standard 

deviation of the mean value 𝑢(�̅�) = σ(𝑌)/√𝑁 are included in the further evaluation. 

Hence, in our MCS, we model the measurement value 𝑌 as the realization of a random number 𝑌r ∼

𝒩(�̅�, σ(𝑌)/√𝑁) , i.e. as a normal distributed number around the mean value with the uncertainty (i.e. 

the experimental standard deviation of the mean) used as a parameter to describe the width of the 

distribution. 
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Attention: If the noise is too low (σ < ΔADC/3), an additional contribution for the consideration of the 

quantization resolution has to be included (𝑢(�̅�) = ΔADC/3). The measurement value 𝑌 in the MCS is 

then the realization of a random number 𝑌r ∼ 𝒩(�̅�, ΔADC/3) without an influence of the number of 

measurements. An alternative solution is to model with Yr ∼ 𝒰(�̅�, ΔADC/2) in this case. The quantisa-

tion resolution ΔADC must be determined experimentally or provided by the manufacturer. 

3.1.2.2 ILMD 

For ILMDs, what has been said for LMDs applies analogously. The quantization noise does not usually 

play a role here, as the quantization resolution is usually sufficiently good. In addition to the number 

of measurements 𝑁, the size of the evaluation region 𝑀 (macro pixel, containing 𝑀 physical camera 

pixel) also plays a role. One, therefore, averages over 𝑁 ∗ 𝑀 values so that the experimental standard 

deviation of the mean value is reduced accordingly by the factor 1/√𝑁 ∗𝑀. However, it should be 

checked here whether an enlargement of the measurement region or an increase in the number of 

images taken also leads to a reduction in the experimental standard deviation of the mean value or 

whether correlations prevent this. For 𝑁 ∗𝑀 >  1000, a noise reduction can usually no longer be 

achieved in practice. 

3.1.2.2.1 Difference Image Method 

The user of an ILMD usually finds it difficult to access the physical model parameters. These are usually 

also changed by the correction algorithms of the manufacturer, so it is better to make investigations 

with the luminance images themselves. 

Here, one can work in the same way as with LMDs with short-time standard deviations, i.e. one takes 

a series of measured values and analyses the temporal standard deviations of the values for a defined 

time range. 

With ILMDs, however, the difference image method can also be used. Here, two images are acquired 

quickly after each other, and the difference image is determined. The temporal noise σ𝑡 of the ILMD 

measurement data can now be determined from the spatial noise σ𝑜 in the difference image, where 

σ𝑡 = σ𝑜/√2. The √2 comes from the difference image. The difference image represents a random 

number based on the difference of two random numbers with the standard deviation σ𝑡. Therefore, 

the difference image itself has a standard deviation of √2σ𝑡. 

Using this approach, we will get for the signal to be modelled by MCS: 𝑌r ∼ 𝒩(�̅�, σ𝑜/√2) 

3.1.2.2.2 Photon Transfer Method  

The standard deviation can be estimated by measurements or based on the physical properties of the 

sensor (assuming that the camera electronics itself is not the limiting factor). This modelling is usually 

done by the photon transfer method (PTM, (Janesick, Klaasen and Elliott, 1985)) and described in detail 

in (EMVA, 2016).  

A very short summary for a physical model using the signal 𝑌 as direct ADC counts: In an image sensor, 

the incident photons are converted into electrons, which can be read out in very different ways. In 

principle, however, due to the Poisson distribution of shot noise generated by the electron flow, one 

obtains the relationship that the variance of the signal shot noise σY
2 corresponds to the mean value �̅� 

of the signal shot noise. From this relationship, the model parameters system transmission factor, 𝑘sys, 

and dark signal noise, σ0, can then be derived. A further refinement of this modelling can be found in 

(EMVA, 2016), hereafter denoted as EMVA1288. 

This results in the following for the modelling of the signal noise for a single pixel 𝑀 = 1 in a single 

capture 𝑁 = 1: 



 
 

14 
 

σ2(𝑌) = 𝑘sys𝑌 + σ0
2 (13) 

Using multiple image captures and or larger regions, the noise can be reduced accordingly. 

σ(�̅�) = √
𝑘sys𝑌 + σ0

2

𝑀 ∗ 𝑁
 

The signal for the MCS can be modelled 𝑌r ∼ 𝒩(�̅�,√
𝑘sys𝑌+σ0

2

𝑀∗𝑁
) 

Attention: This is only true for the ADC counts of the conversion process. For the luminance readings, 

which the user usually only has access to, several other effects also play a role (e.g. dark signal, defect 

pixel, and shading correction) so that the relationship mentioned above only represents the lower 

noise limit. 

3.2 Adjustment factor 
Using an adjusted instrument, we have an adjustment factor kY and its uncertainty. That means we 

can use the luminance reading of our measurement device 𝑌C
‘  and apply the adjustment factor: 

𝐿′C = 𝑘Y𝑌′C = YC (14) 

In our MCS, we model the adjustment factor as the realization of a random number 𝑘Y
r ∼

𝒩(𝑘Y, 𝑢(𝑘Y))  

There are several possibilities for getting information about the adjustment factor: 

• Using a adjusted instrument with a calibration sheet, one can assume that one can use 𝑘Y
r ∼

𝒩(1, 𝑈(𝑘Y)/2). That means we assume the factor is one, and we use half of the expanded 

measurement uncertainty stated in the calibration sheet of the luminance meter as standard 

deviation. 

• Using a known adjustment factor (usable if one adjusts in the in-house laboratory). In this 

case, one can use the adjustment factor for the luminance meter as measured and its uncer-

tainty 𝑘Y
r ∼ 𝒩(𝑘Y, 𝑢(𝑘Y)).  

Attention: Do not apply the factor twice in this case! 

• Using the information from the characteristic value initial adjustment index 𝑓adj. 

𝑘Y
r ∼ 𝒩(1,√𝑓adj

2 + 𝑢2(𝑓adj)). 

Using the characteristic value: 

The initial adjustment index, 
adjf , (typical or individual value from the luminance meter) (ISO/CIE 

19476:2014, 2014) is defined as (with the notation of this document): 

𝑓adj = |
𝑌

𝑌0
− 1| = |

𝑌C
𝐿′C
− 1| (15) 

From the practical point of view, the value itself should be zero after the initial adjustment process. 

But the uncertainty u(𝑓adj) has to be stated, too and can be used in a measurement budget. 

3.3 Temperature Dependence 
Influence of ambient or device temperature change. Here we can use the same procedures for light 

sources and measurement devices. The explanation will be done with the luminance of a light source. 
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L = cTL′ (16) 

The temperature dependence can be modelled generally according to3 

X = 𝑐TX
′ = (1 − αTΔ𝑇a)X

′
  (17) 

The relative temperature coefficient αT and its uncertainty should be estimated by a linear regression 

model (see 4.1.1). 

1. In the case that the data for αT and Δ𝑇a are only typically known and may not be corrected, 𝑐T 

must be set to 1, and the typical information for αT and Δ𝑇a must be integrated into the MU 

of 𝑐T. 

𝑐T = 𝒰(1, |αTΔ𝑇a,max|) (18) 

Where Δ𝑇a,max is the maximal temperature deviation, e.g. based on a tolerance interval 

(Δ𝑇a,max = 1.2 𝐾 in CIES025, see 4.2.2).  

2. One source of information, in this case, is the quality index 𝑓6,T. This index states the absolute 

value of 10 times the relative temperature coefficient. Therefore, one gets: 

𝑐T = 𝒰(1, |
1

10
𝑓6,TΔ𝑇a,max|) (19) 

3. In the case that αT and Δ𝑇a are known (with expectation value and MU), one can generate the 

random numbers for αT
r = 𝒩(αT, 𝑢(αT)) and Δ𝑇a

r = 𝒩(Δ𝑇a, 𝑢(Δ𝑇a)) and use (17) for the 

MCS. 

Using the characteristic value: 

The quality index, 𝑓6,T, describing the temperature dependence of the photometer is defined as: 

( ) ( )

( )
2 1

6,T

R 2 1

Y T Y T T
f

Y T T T

− 
=

−
 (20) 

With 𝑇2 = 40°C, 𝑇1 = 5°C, 𝑇R = 20°C and Δ𝑇 = 10°C. This means 𝑓6,T represents the absolute value 

of 10 times the relative temperature coefficient αT. 

3.4 Ageing information 
Information about the ageing of sources and detectors can only be obtained through many years of 

experience and the evaluation of calibration certificates (for example, see 4.5). Some indications can 

also be found in the literature.  

• The ageing of light sources is usually described as a function of the operating hours. 

• The ageing of detectors is usually described as a function of a lifetime (time since the last cali-

bration). 

• Controlled standards, common for luminance standards, can be an exception here, as the age-

ing of the detector is usually the dominant variable. 

If no information is available from your calibration certificates, you can ask the manufacturer or use 

the typical values from the literature. 

Example values from literature: 

 
3 The sign in this equation is different from CIE198-SP1:1.4. 
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• CIE198-SP1.2 2.8 (ageing of a luminous intensity standard lamp depending on the operation 

time) → 0.0007 1/h   

• CIE198-SP1.2 2.9 (ageing of a luminance meter depending on the time since the last calibra-

tion) → 0.002 1/year 

In addition, ageing is typically spectrally nonuniform. This may affect the calibration of spectroradiom-

eters and light sources for spectral radiance/irradiance. 

3.5 Spectral mismatch 
A photometer should be matched to the 𝑉(𝜆)-function. If this match is not ideal and the SD of the DUT 

differs from the SD of the light source used for calibration a correction may be necessary or the cor-

rection is set to one and the possible spectral mismatch correction factor is used to determine the 

measurement uncertainty of the spectral mismatch. 

 

Figure 3: Calculation of the Spectral Mismatch Correction Factor (SMCF) 

We have to deal with the calibration and the measurement state, and we have to describe the MU of 

integrated quantities, which was investigated in this project for the conference paper (Krüger et al., 

2023), which will be submitted to the peer review journal “Lighting Research & Technology”. 

 

A more general way to calculate the SMCF: 

𝐹(𝑆Z(λZ), 𝑆C(λC)) =
𝐹C,N
𝐹C,D

𝐹M,N
𝐹M,D

 

𝐹C,N = ∫𝑆C(λC)𝑠(λs)dλ 

𝐹C,D = ∫𝑆C(λC)𝑠T(λ)dλ 

𝐹M,N = ∫𝑆Z(λZ)𝑠T(λs)dλ 

𝐹M,D = ∫𝑆Z(𝜆Z)𝑠(𝜆s)d𝜆 
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𝐹(𝑆Z(λZ), 𝑆C(λC)) =
∫𝑆C(λC)𝑠(λs)dλ

∫ 𝑆C(λC)𝑠T(λ)dλ⏟          
Calibration

∫𝑆Z(λZ)𝑠T(λ)dλ

∫ 𝑆Z(λZ)𝑠(λs)dλ⏟          
Measurement

̇
 

 

Symbol Description  

𝐹(𝑆Z(λZ)) SD DUT  

λZ wavelength scale for the measurement of SD DUT 

𝐹(𝑆C(λC)) SD Calibration  

λC wavelength scale for the measurement of SD Calibration 

𝑠(λs) the (rel.) spectral responsivity of the detector  

λs wavelength scale for the spectral responsivity measurement 

𝑠T(λ) the spectral responsivity of the target function (e.g. 𝑉(λ))  

λ nominal wavelength scale 

 

Using the characteristic value: 

The general V(λ) mismatch index, 𝑓1
′, uses a general calculation not directly related to the spectral 

mismatch correction factor. However, as demonstrated in (Krüger et al., 2022), one can use a statistical 

method to analyse the relationship between the index and the spectral mismatch correction factor. 

 

Figure 4: Relation between the absolute deviation due to spectral mismatch and the 𝑓1
′ value for phosphore type white LEDs 

and RGB-based white LEDs. (Krüger et al., 2022) 

The quantity 𝐹𝑖,𝑞+
a  represents the 95 % quantile (index q+) for the absolute (upper index a) deviation 

of the spectral mismatch correction factor minus one (|𝐹 − 1|) for the photometer i based on a large 

test set of spectral distributions. The slope of the points is given by the m-values in Figure 4, whereas 

the r-value represents the square root of the coefficient of determination for the regression. 
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Example: Using this information in a measurement uncertainty budget, the spectral mismatch 

correction factor F can be modelled as 𝐹PT ∼ 𝒰(1, 0.28 ∙ 𝑓1
′) for measurements of phosphor-

type white LEDs and 𝐹RGB ∼ 𝒰(1, 0.87 ∙ 𝑓1
′) for measurements of RGB-type white LEDs. 

3.6 Linearity index,  

With the notation of this document, the linearity index is defined based on the relative deviation be-

tween actual value and the given value at a certain input setting: 

 (21) 

This means for the output value 𝑌 (with the full range value 𝑌max in the observed measurement range) 

and the corresponding input value 𝑋 we calculate the value 𝑓3(𝑌). In this case the full range value 𝑌max 

is corresponding to 𝑋max input value. 

The linearity index 𝑓3 is defined as: 

 (22) 

Meaning that we look for the maximum 𝑓3(𝑌) value in a specific measurement range from 10% full 

range value to the full range value. 

The characteristic function 𝑓3(𝑌) agrees with the definition of non-linearity of (CIE 237:2020, 2020): 

 
(23) 

With the sensitivity 𝑠(𝑍) and the reference sensitivity s(𝑍R). However, no characteristic values based 

on this function are defined there. 

For the following, we will have a look at some properties of the 𝑓3(𝑌) definition above.  

Properties and remarks: 

• 𝑓3(𝑌max) = 0 (This is more or less an adjustment to define a working point.) 

• 𝑓3(𝑌 → 0) is not defined or significantly depending on the MU of the input values 𝑋. There-

fore, the calculation is limited to the range 𝑌 = 0.1𝑌max to 𝑌max. 

If one attributes the correction of the non-linearity of a system to multiplication with a correction fac-

tor dependent on the output level (Ferrero, Campos and Pons, 2006) then one must use 

 
(24) 

multiply so that with 𝑋max = 𝑌max, 𝑓3(𝑌) can be written as: 

 
(25) 

Whereas 𝐿0 is the luminance of a luminance standard or other known reference (generally 𝑋) and 𝐿 

the luminance measurement result for the corresponding setting 𝐿R (generally 𝑌). 
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Thus, with the determination of 𝑐NL(𝑌) one has determined both the correction function including 

their uncertainty 𝑢(𝑐NL(𝑌)) and the characteristic value, whereby the measurement uncertainty and 

the influence of the non-linearity correction on the measurement result can also be described. 

All this information is not usable in a MU budget. However, with some additional assumptions, one 

can estimate the influence of the non-linearity roughly. 

The manufacturer and, with a few exceptions, the user can also use the information from a linearity 

measurement, which is needed to determine the non-linearity correction and its test, to estimate a 

“residual error”. However, it makes sense to implement the correction not as a factor but as an offset. 

This offset correction must be carried out before applying further correction factors.  

 (26) 

4 Parameter Estimation 

4.1 General Models 

4.1.1 Linear Regression 
Linear regression will be used often to estimate model parameters, e.g.  

• relative temperature coefficients with value pairs (temperature, value) 

• dark signal generation rates (integration time, signal @ dark condition) 

• evaluation of high dynamic range information (integration time, signal @ light condition) 

Calculating the slope α and intercept β from the measurement value pairs, the measurement uncer-

tainty of the slope 𝑢(α) has to be estimated too. 

Let’s start with a linear model: 

y x =  +  (27) 

From the device characterization, we get value pairs and measurement uncertainties 

(𝑥𝑖 , 𝑦𝑖), (𝑢(𝑥𝑖), 𝑢(𝑦𝑖)). Using the standard ordinary least squares approach (OLS), we reach for the 

slope α: 

xy

xx

S

S
 =  (28) 

Using the standard notation of summation in this case: 

( )( )1

n

xy i ii
S x x y y

=
= − −  (29) 

( )( )1

n

xx i ii
S x x x x

=
= − −  (30) 

But what about u(α)? Here we have three different possibilities: 

• Using the empirical standard deviation, we get from the OLS regression model. 

• Calculating u(α) using a MC-Simulation 

• Using the approach of (Matus, 2005) 

( )'0'YY c Y Y= −
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4.1.1.1 Empirical standard deviation 

In the first approach, the empirical standard deviation, s(α), (every regression algorithm will return) 

will be used. This value describes how the model fits (independent from u(x) and u(y)!). 

( ) y

xx

s
s

S
 =  (31) 

( )
2

22

21

1

2 ( 2)

n xx yy xy

y i ii
xx

S S S
s y x

n n S
 

=

−
= − − =

− −
  (32) 

4.1.1.2 Monte Carlo Simulation 

In the second approach, one can use the MCS. Generating random numbers 

(𝒩(𝑥𝑖 , 𝑢(𝑥𝑖)),𝒩(𝑦𝑖 , 𝑢(𝑦𝑖))) and calculate the slope α in every trial. The standard deviation of α can 

be calculated after the simulation. This straightforward but time-consuming approach should be 

avoided in a complex model. 

4.1.1.3 Matus 

In the third case, the approach of (Matus, 2005) is used, calculating the slope’s standard deviation and 

the measurement uncertainty information from the input data. This results in the following formulas: 
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(33) 
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 (34) 

This results in two interesting, exceptional cases: 
Table 1:𝑢(𝛼) for different settings 
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How to compare u(α) and s(α) (see also GUM H 3.2): 

u(α): 

• Is identical to the results of a MCS (standard deviation of α) 

• But more efficient in the calculation (available in front of a MCS) 

• Using u(α) equations, one can make design decisions for the experiments (usable also for Gen-

eral Least Square Models GLS) 
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s(α): 

• Empirical standard deviation, describing how the model fits (independent from u(x) and u(y)) 

 

 

 
Figure 5: 𝑢(𝛼) and 𝑠(𝛼) for different settings 

I.e. for a simple, practical approach, especially if enough points are available for the regression, one 

will be able to use 𝑠(α). Here, however, one must be aware that one does not use the measurement 

uncertainty of the points and must trust that due to the large number of measurement points, the 

realization of the random variables is implicitly included in the regression. 

Above all, one must be able to rely on the fact that the mathematical model used represents the un-

derlying physics (see, for example, the use of a polynomial function to generate a wavelength scale for 

a spectroradiometer from individual measurements of spectral lines). 

On the other hand, Matus’ approach (Matus, 2005) can be realized quickly so that one can get to the 

slope and its MU without MCS. 

 

4.2 Examples 
For all experiments to investigate the characteristic of ILMDs, great care should be taken to separate 

the dependency you want to determine from other possible influences. This is not always easy, as the 

following examples demonstrate. 

Problems arise in particular with (some examples for luminance measurements): 

• Changing the luminance without changing the spectral distribution of the light source. 

• Changing the size of luminous surfaces without changing the luminance. 

• Determining angular dependencies (i.e. response non-uniformity) without considering the ef-

fect of any angular (or spatial) dependence of the light source. 
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Furthermore, the following procedure is helpful for experiments (with examples of the temperature 

sensitivity of a luminance meter): 

1. Draw up an essential process for the measurement. 

• What quantity is to be measured? [luminance] 

• Which influencing variable [temperature of the luminance meter] is to be changed, in 

which range [15°C … 35°C] is this to happen, and how will the change take place (values 

[temperature in 5K steps], times [settling time about two hours4], control variables [device 

temperature, flow and return temperature of the climate control, additional temperature 

sensor])? 

• Which critical influencing variables must be kept constant? [luminance of the reference 

source] 

2. Carry out a few measurements, test the planned evaluation, and validate the original assump-

tions (waiting times, etc.). In any case, you should also check the reproducibility when ap-

proaching specific measuring points. 

3. Generate an automatic process for the measurement and evaluation to get a higher data den-

sity. 

4.3 Light source stability 
The stability of the light sources is determined in so-called burn-in tests. The measurement of a lumi-

nance standard is prepared with a stable LMD/ILMD (sufficiently run-in, high repeatability is needed). 

Shortly after switching on the luminance standard, the measurement starts, whereby as many meas-

urements as possible (small time interval) should be made. 

From the data, one can then make specifications for the necessary burn-in time and determine the 

remaining residual noise for modelling. 

4.3.1 Burn-In Conditions for luminance standards  
The burn-in process of a luminance standard (SD CIE standard illuminant A) is illustrated in Figure 6. 

From the data, a necessary run-in time of 3-5 min can be derived. The "residual noise" is <2e-5, 

whereby at this order of magnitude, it is no longer possible to distinguish between the residual noise 

of the DUT and that of the measuring device. 

 
4 When determining temperature dependencies, long setteling times are often required so that the temperature 
conditions in the device stabilise. In this case, it makes sense to record measured values at short intervals (e.g. 
one minute) in order to observe the transient behaviour. For the evaluation of the actual measurement, the 
mean value of the last measurements (before setting the next temperature) can be used. 
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Figure 6: Burn-in results for a luminance standard 

4.3.2 Burn-In Observation for DUT’s 
The burn-in process of a DUT (SD phosphore type LED) is illustrated in Figure 7. From the data, a nec-

essary run-in time of only 1 min can be derived. The "residual noise" is 2.5e-5, whereby at this order 

of magnitude it is no longer possible to distinguish between the residual noise of the DUT and that of 

the measuring device. 

 

Figure 7: Burn-in results for a DUT 

4.4 Temperature Coefficient 
For the estimation of the temperature coefficient of a reading x′ with respect to a temperature T 

(ambient temperature 𝑇a or device temperature 𝑇D) usually, a measurement in a temperature cham-

ber is recommended for exact measurements. For rough estimations, measurements during self-heat-

ing are also possible. 
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The measurement design for a linear regression model (see 4.1.1) should be made over the complete 

temperature operating range for the device. Furthermore, the choice of temperature steps and settling 

times should ensure that the device under investigation is already in thermal equilibrium during the 

measurement. This can be guaranteed by so-called pyramid measurements, in which a specific tem-

perature is realized both in the direction of rising and falling temperature. 

 

 

Figure 8: Temperature settings for a pyramid design (T2) and modified pyramid design (T1) 

 

 

Figure 9: Example temperature profile for the T1-Design from Figure 8 
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Figure 10: Regression line and confidence interval for a relative temperature coefficient evaluation 

 

Table 2: Measurement data and results for the sample temperature coefficient 

 T / °C Y / A.U. 

u(.) 0,5 0,001 

𝛼 - 0,00015254  

u(α) Matus 6,095E-05  

u(α) MCS 6.070E-05  

s(α) 2,8703E-05  

   

 22,25 0,998607574 

 16,125 1,000268825 

 19 0,999958121 

 22,375 0,999638246 

 25,625 0,999255214 

 28,625 0,998744568 

 31,375 0,998172623 

 34,1875 0,997269868 

 23 1,000037044 
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The 𝑌 values in Table 2 represent relative values only. One can normalize the reading to the reference 

temperature reading, the mean value or other calculations. The only precondition is that the relative 

values are close to 1 at the end. 

For the MU of 𝑌 only the repeatability was taken into account. All fully correlated contributions do not 

affect the measurement uncertainty of the slope. 

4.5 Ageing of a luminance standard 
One can proceed similarly to describe the ageing of a luminance standard, i.e. the change in luminance 

between calibrations as a function of time or operating hours. 

For this purpose, a table with the date of calibration, current operating hours counter, luminance and 

standard measurement uncertainty of the luminance is used. In the following, the luminance is nor-

malized to the last known value from the calibration certificates. 

The uncertainty in calibrations contains, at least in the case of NMI’s, large correlated portions that 

result from the traceability of the unit. It is, therefore, not sensible in this case to use the MU of the 

calibrations in the regression analysis, as these would have to be modelled correlated in this case, 

which leads to no contribution to MU in the slope. 

It may therefore make sense to use the empirical standard deviation 𝑠(α) from the regression as un-

certainty for the slope. 

 

Figure 11: Ageing of a luminance standard over 50 operation hours with standard uncertainties from the calibration sheets 
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Table 3: Collecting data from calibration certificates of a luminance standard 

α𝑝,C 0,0077% 1/h  

s(α𝑝,C) 0,00006% 1/h  

𝑟2 0,977   

𝑡 / days 𝑡op / h 𝐿rel 𝑢(𝐿rel) 

3500 112,33 1,0000 0,0031 

2788 106,15 0,9991 0,0031 

2106 96,20 0,9984 0,0032 

1469 89,35 0,9981 0,0032 

728 81,56 0,9971 0,0032 

0 61,82 0,9960 0,0032 

 

4.6 Non-uniformity of a light source 
In addition to the run-in behaviour, the radiation behaviour of the luminance standards also plays a 

role for the measurement, which must be described. 

The following influences must be examined: 

1. How does the average luminance depend on the size of the evaluation region? 

2. How does the average luminance change if the evaluation region is not positioned precisely in 

the centre? 

3. How does the luminance change if the measurement is not exactly perpendicular to the sur-

face of the luminance standard? 

 

In the first step, the luminous surface of the lu-
minance standard is captured with an ILMD, and 
the average luminance of circular regions of dif-
ferent sizes is evaluated (see picture). Then the 
relative mean luminance is plotted as a function 
of area and the area surrounding the calibration 
conditions (1/4 of the total area) is examined. 
If you want to calculate the homogeneity prop-
erties of the ILMD, you can also combine differ-
ent images that show the luminance standard on 
different areas of the ILMD (multiple displace-
ment of the ILMD relative to the luminance 
standard while maintaining the perpendicular 
position). As a rule, however, this is not neces-
sary. 
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Figure 12: Relative luminance change for different evaluation region sizes (L³ luminance standard) 

 

Figure 13; Relative luminance change for different evaluation region sizes (LN3 luminance standard) 
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4.7 Non-Linearity Correction 
Let’s assume we make several measurements of a luminance standard with different integration times 

of the luminance measuring device: 

 

Figure 14: Measurement of a luminance standard with different integration times 

We define a maximum load and two reference values. The line through the reference points represents 

the ideal behaviour of the device. Any deviation from this line is called non-linearity. 

Remark: The manufacturer will do this (as demonstrated in Figure 12) with the Analogue-Digital-Con-

verter readings (called counts and stated in digital numbers (DN) or least significant bit (LSB)) and not 

with the final measurement results. In this case, the manufacturer can avoid a range change and prob-

ably use the non-linearity information for different measurement ranges. If this is impossible, the man-

ufacturer can switch between different non-linearity corrections for different measurement ranges 

(amplifier gain settings). 

The corrected value 𝑆 of the internal measurement can be described based on the reading 𝑆′ with 𝑆 =

𝑓NL(𝑆
′). The correction function 𝑓NL can be described using a polynomial or a look-up table. The use 

of the polynomial is described here. 

p

NL

0

( )

N

i

i

i

f x x
=

=  ( 35) 

With α𝑖 the polynomial coefficients of the polynomial with grade 𝑁p and 𝑥 is the variable of the do-

main, used for evaluation. 

Remark: The dark signal correction should be applied before, e.g. S = 𝑓NL(𝑆
′ − S0

′ ) 

The question for the MU evaluation is now how to implement this correction. We have two possibilities 

here: 

• Use a MCS for the regression and estimate the polynomial coefficients, including their corre-

lation. 

• We can use the range calibration approach (Kessel, Kacker and Sommer, 2010) 
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Figure 15: Description of the non-linearity and the result of a non-linearity correction 

Table 4: Coefficients of the full regression polynomial for Figure 13 (with domain scaling [0,4000]→[-1,1]) 

Coef. 𝑥0 𝑥1  𝑥2 𝑥3 

Mean 2004,20 1986,10 -1,55 16,65 

StdDev 0,47 0,64 0,40 0,81 

Rel.StdDev 0,02% 0,03% -25,93% 4,88% 

 

 

Figure 16: Coefficients of correlation for the polynomial coefficients 
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5 Monte Carlo Simulation 
According to GUMS1 the Monte Carlo Simulation (MCS) is one way to calculate the measurement un-

certainty of a measurand. 

This is neither the place to explain the mathematical foundations of MCS nor to go into its subtleties. 

The following is only a plausible basic introduction, which should be sufficient to carry out and evaluate 

the first MCS on your own. 

The reader will find a more detailed introduction on the engineering level with practical examples (in-

cluding source code) in (Amelin, 2015; Ciaburro, 2020; Dunn and Shultis, 2022; Stevens, 2022). 

5.1 Basics 
Assume we have a series of measurements with 𝑁 readings taken one after the other. Now we can 

determine the mean and the standard deviation of these readings. 

µ̂ = �̄� =∑𝑥𝑖

𝑁

𝑖=1

�̂� = √
1

𝑁
∑(𝑥𝑖 − �̄�)

2

𝑁

𝑖=1

 ( 36) 

With the MCS as it is used for the determination of the combined uncertainty of a measurement, we 

do precisely the opposite. We know the value (mean) and the uncertainty (standard deviation) of the 

measured input variable (e.g. from the readings and calibration sheets) and generate a series of indi-

vidual values (assuming a probability density function (PDF) - often the PDF of a normal distribution) 

representing the possible spread of values for this simulated quantity which might be seen in real 

measurements. We calculate the output quantity or variables via the measurement model with these 

individual values (usually from different input variables). Now we can again determine the mean value 

and standard deviation for the output variable and then have an estimate for our output variables and 

their measurement uncertainty. 

Table 5: Analogy between multiple measurements (left) and the generation of random numbers in an MCS (right) 

Index Measurement 
 

µ 9,973 

1 9,986 
 

σ 0,117 

2 10,001 
 

Index Simulation 

3 9,968 
 

1 9,789 

4 9,976 
 

2 10,11 

5 9,885 
 

3 10,136 

6 10,141 
 

4 9,965 

7 10,133 
 

5 9,646 

8 9,738 
 

6 10,158 

9 9,858 
 

7 9,959 

10 10,047 
 

8 10,102    
9 9,919 

µ̂ 9,973 
 

10 9,927 

σ̂ 0,117 
   

   
µ̂ 9,971    
�̂� 0,156 
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The numerical examples in Table 5 roughly reproduce the procedure (with far too few numbers). First, 

you have ten measured values, from which you determine the mean and standard deviation (left half 

of the table). In the MCS (right half of the table), you then take these data and generate ten random 

numbers with the parameter’s mean value and standard deviation using a random generator. If you 

determine the mean value and standard deviation for these generated random numbers, then you get 

approximately the values that you previously obtained in the evaluation of the measurement series. 

The more random numbers you generate, the better the agreement. 

5.2 Code Example 
The implementation of the MCS can be found in the GitHub repository of this project under the folder 

https://github.com/empir19nrm02/empir19nrm02/tree/main/empir19nrm02/MC  

Examples for the usage can be found in the Jupyter Notebook https://github.com/em-

pir19nrm02/empir19nrm02/blob/main/empir19nrm02/Jupyter/MCSim_PM.ipynb  

  

https://github.com/empir19nrm02/empir19nrm02/tree/main/empir19nrm02/MC
https://github.com/empir19nrm02/empir19nrm02/blob/main/empir19nrm02/Jupyter/MCSim_PM.ipynb
https://github.com/empir19nrm02/empir19nrm02/blob/main/empir19nrm02/Jupyter/MCSim_PM.ipynb
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