1st Part, 10 minutes

- Presentation in 2021
- For more detail, please refer to this paper

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

1003507

Resonance at the Front of Lightning Impulse Voltage Waveforms Caused by the Load Capacitor

Wei Zhao^(D), *Senior Member, IEEE*, Haiming Shao^(D), *Member, IEEE*, Jiandong Ding^(D), Chuansheng Li^(D), and Jiafu Wang^(D), *Member, IEEE*

Resonance at the front of lightning impulse voltage waveforms caused by the load capacitor

Wei Zhao, Haiming Shao, Chuansheng Li and Jiafu Wang National Institute of Metrology, China <u>zhaowei@nim.ac.cn</u>

- **1. Motivation of this research**
- 2. Circuit analysis and simulation
- 3. Experimental verification
- 4. Conclusion

1. Motivation

Table 2-1. Comparison participants

No	Country	Institute	Acronym	Status	Region	Contact person
1	Sweden	RISE Research Institutes of Sweden	RISE	NMI	EURAMET	Dr. Alf-Peter Elg <u>alf.elg@ri.se</u>
2	Finland	VTT Technical Research Centre of Finland, National Metrology Institute VTT MIKES	VTT	NMI	EURAMET	Dr. Jari Hällström jari.hallstrom@vtt.fi
3	Spain	LCOE-FFII, High Voltage Technological Centre	LCOE	DI	EURAMET	Prof. Fernando Garnacho <u>fernando.garnacho@ffii.es</u>
4	France	Laboratoire national de métrologie et d'essais	LNE	NMI	EURAMET	Mohamed Agazar Mohamed.Agazar@Ine.fr
5	Germany	Physikalisch-Technische Bundesanstalt	РТВ	NMI	EURAMET	Dr. Johann Meisner johann.meisner@ptb.de
6	Italy	Istituto Nazionale di Ricerca Metrologica	INRIM	NMI	EURAMET	Dr. Paolo Roccato p.roccato@inrim.it
7	Turkey	TÜBİTAK National Metrology Institute	TUBITAK	NMI	EURAMET	Dr. Ahmet Merev ahmet.merev@tubitak.gov.tr
8	Japan	Japan High-voltage Testing Laboratory Liaison	JHILL	Other ¹	APMP	Takayuki Wakimoto wakimoto@calibration.jp
9	China	National Institute of Metrology	NIM	NMI	APMP	Dr. Wei Zhao <u>zhaowei@nim.ac.cn</u>
10	Australia	National Measurement Institute	NMIA	NMI	APMP	Dr. Yi Li yi.li@measurement.gov.au
11	Argentina	Instituto de alta tensión y transmisión de energía	IATTE	Other ²	SIM	Prof. Ricardo Diaz rdiaz@herrera.unt.edu.ar
12	Canada	National Research Council	NRC	NMI	SIM	Dr. Harold Parks harold.parks@nrc-cnrc.gc.ca
13	Russia	Russian Research Institute for Metrological Service	VNIIMS	DI	COOMET	Tatiana Dubrovskaya <u>dubrovskaya ta@vniims.ru</u>

¹ Participation authorized by NMIJ AIST (Japanese NMI)

² Participation authorized by INTI (Argentinian NMI)

1. Motivation

[kV]

Trg

0

TRMS recorded waveforms in different laboratories

• J. Hällström, A-P. Elg, J. Havunen and F. Garnacho, Final REPORT of Comparison of lightning impulse (LI) reference measuring systems.

- 1. Motivation of this research
- 2. Circuit analysis and simulation
- 3. Experimental verification
- 4. Conclusion

2. Circuit analysis and simulation

Fig. 1 Single-stage basic circuits for the generation of LI voltage waveform

Fig. 2 circuits for the generation of LI voltage with damped capacitive divider as the load capacitor

2. Circuit analysis and simulation

Fig. 3 Impedance of the capacitors at different frequency

Damped capacitive divider is usually designed as, $R_{b1} \times C_{b1} \approx (100 \sim 200) \Omega \cdot nF$ (1)

2. Circuit analysis and simulation

Simulated result:

Theoretical calculation:

Fig 5(a) no inductances were considered in the circuit

Fig5(b) inductances were added to the circuit

- 1. Motivation of this research
- 2. Circuit analysis and simulation
- 3. Experimental verification
- 4. Conclusion

3. Voltage step experiments

Fig. 6. recorded LI waveform, when the resistor in series with the capacitor is (a) 0, (b) 150 Ω .

<i>R</i> _b (Ω)	70	150	400
Calculated Ratio	16%	29%	51%
Simulated Ratio with inductance	22%	35%	55%
Simulated Ratio with no inductance	18%	30%	52%
Measured Ratio	18%	27%	47%

3. Difference on two measuring systems

Fig. 7. experiment setup for verifying the difference between two reference measuring systems at difference LI waveform.

3. Difference on two measuring systems

Fig. 8. Photo of the experiment setup in the laboratory

3. Step Response experiments

Table III. Step response parameters of dividers with different length cables

Divider	Cable	<i>T</i> α (ns)	T _N (ns)	t _S (ns)	β _{rs} (%)
D700v2	30 m RG214	8	10	120	15.0
D700v2	10 m RG214	5	6	80	18.3
D600v1	10 m RG214	22	26	60	40.4

Table IV. Errors of parameters by convolving the ideal lightning impulse waveform with step response of the dividers

Divider	Cable	Nominal T ₁ (μs)	U _t error (%)	T ₁ error (%)	T ₂ error (%)
		0.84	-0.0	2.7	0.4
D700v2	30 m RG214	1.20	0.1	2.2	0.3
		1.56	0.1	1.9	0.3 0.2 0.1 0.1
		0.84	-0.0	1.4	0.1
D700v2	10 m RG214	1.20	0.0	1.2	0.1
		1.56	0.1	1.1	0.0
		0.84	-0.0	0.4	-0.0
D600v1	10 m RG214	1.20	0.0	0.5	-0.1
		1.56	0.1	0.5	-0.1

3. Lightning impulse voltage experiments

Fig. 9. recorded waveforms of the two system in (a) test 1, (b) test 4, (c) test 6, and (d) test 7

3. Lightning impulse voltage experiments

		Т	able V. Divider	D700v2 conn	ected with 10 m R	G214		
	Connection	Test NO.	$R_{d}\left(\Omega\right)$	R _b (Ω)	waveform (µs)	$\Delta U_{\mathbf{t}}(\%)$	∆T 1 (%)	ΔT ₂ (%)
(b)		1	116	0	0.91/51	0.1	1.5	-0.2
$\frac{1}{1}c_{\nu}$	Fig. 7(a)	2	164	0	1.26/52	0.3	0.7	-0.3
(c)		3	208	0	1.60/53	0.2	0.3	-0.3
	Fig. 7(b)	4	116+206	0	2.34/55	0.2	0.2	-0.3
	$\operatorname{Fig} \mathbf{Z}(c)$	5	59	105	0.87/52	0.1	2.3	-0.2
$\begin{array}{c} A \\ \bullet \\ C_{b_1} \\ \hline \\ $	Fig. / (C)	6	116	206	1.51/54	0.2	0.8	-0.2
	Fig. 7(d)	7	208	0	0.83/51	-0.2	1.2	0.0

Table VI. Divider D700v2 connected with 30 m RG214

Connection	Test NO.	$R_{d}(\Omega)$	$R_{\mathbf{b}}\left(\Omega\right)$	waveform (µs)	ΔU _t (%)	∆T 1 (%)	ΔT ₂ (%)
	11	116	0	0.93/51	-0.4	3.8	-0.1
Fig. 7(a)	12	164	0	1.26/52	-0.6	3.8	0.3
	13	208	0	1.61/53	-0.5	1.7	0.0
Fig. 7(b)	14	116+206	0	2.33/55	-0.4	1.4	0.0
	15	59	206	0.89/53	-0.6	-2.6	0.1
Fig. 7(C)	16	116	206	1.50/54	-0.5	3.0	0.1
Fig. 7(d)	17	285	0	0.99/51	-0.4	3.1	0.0

4. Conclusion

- Resistors in the damped capacitive divider has been proved to be responsible for the voltage step and oscillation on the front of lightning impulse voltage.
- The waveform parameters measured by two resistive reference standard systems were influenced by the shape of the waveform and also the oscillation on the front. It could introduce another component to the uncertainty of the result during comparison test.
- It is recommended to use impulse capacitor with low equivalent series resistance instead of damped capacitive divider as the load capacitor. This would eliminate this common cause of oscillation on the front of lightning impulse voltage waveform.
- Please contact for any discussion, <u>zhaowei@nim.ac.cn</u>

• Self Introduction

- Future collaboration and calibration, <u>wzhao@vsl.nl</u>

- Preparation for LI comparison campaign in October 2022
 - Tuning the LI generator to generate smooth LI waveforms
 - Tuning the damping resistor of TU Delft for the 3500 kV

Self Introduction

• 2014 to 2022, NIM China, Built reference system in HV area

Impulse energy

Lightning Impulse voltage

Load loss measurement

2022 to now, VSL Netherlands, Power and Energy metrology

Check and Improve the waveform of the LI generation

VSL 1200 kV LI system

VSL 600 kV LI system

Tuning the 4000 kV DCVD of TUD

		STD					DUT				Error o	of DUT					
Record ID	Ut(kV)	T1(us)	T2(us)	b'(%)	Record ID	Ut(kV)	T1(us)	T2(us)	b'(%)	dUt(%)	dT1(%)	dT2(%)	db'(%)				
13	270.6	1.444	47.93			263.6	1.176	47.69		-2.6	-18.6	-0.5		Triangular setup and	Trial test		
15	272.2	1.312	47.51			264.9	1.094	47.30		-2.7	-16.6	-0.4		Short-circuit DR			
18	267.0	1.055	48.94		50	259.2	2.450	50.61		-2.9	132.2	3.4		Damping resistor 200	+100+1000	D	
20	270.6	0.519	47.88		51	262.9	2.270	50.07		-2.8	337.4	4.6		Remove 980nF capaci	itor from lo	ad capacit	tor
23	274.8	0.768	46.97		54	268.5	1.161	47.00		-2.3	51.2	0.1		Change DR to 400+20	0		
25	270.2	1.301	48.18		56	262.9	1.454	48.34		-2.7	11.8	0.3		Add 980nF Capacitor	as load ca	pacitor	
27	271.2	1.354	47.91		58	264.2	1.259	47.85		-2.6	-7.0	-0.1		Change DR to 400			
30	270.5	1.348	48.08		60	263.8	1.324	48.03		-2.5	-1.8	-0.1		Change DR to 400+10	0		
32	276.7	1.050	47.35		62	268.5	1.124	46.55		-3.0	7.0	-1.7		Change to Rectangula	ar setupa a	nd trial te	st
35	274.4	1.209	47.84		65	265.4	1.235	47.25		-3.3	2.2	-1.2		Change front resistor	and try dif	ferent volt	ages
37	364.1	1.223	47.88		67	351.2	1.251	47.62		-3.5	2.3	-0.5					
38	454.3	1.260	48.07		68	438.6	1.265	47.70		-3.5	0.4	-0.8					
39	544.5	1.265	48.19		69	525.7	1.268	47.81		-3.5	0.2	-0.8					

T1 measurement improved

							1	1										-
		STD					DUT				Error of	FDUT			11+(%)	T1(%) dT	2(%) db'(%)	
Record ID	Ut(kV)	T1(us)	T2(us)	b'(%)	Record ID	Ut(kV)	T1(us)	T2(us)	b'(%)	dUt(%)	IT1(%)	JT2(%)	db'(%)		-3.5	01	-0.7	Formal ter
71	-401.3	1.252	47.70		99	-386.1	1.020	47.35		-3.8	-18.5	-0.7		Remove DR from DCVI	D -3.5	-0.1	-0.7	P570
72	-401.1	1.254	47.72		100	-385.9	1.022	47.38		-3.8	-18.5	-0.7		N400	-3.5	0.6	-0.7	
73	-401.0	1.253	47.72		101	-385.9	1.021	47.38		-3.8	-18.5	-0.7			-3.5	0.5	-0.8	
74	-401.0	1.253	47.73		102	-386.0	1.023	47.37		-3.7	-18.3	-0.7			-3.5	-0.5	-0.7	
75	-401.0	1.250	47.76		103	-386.0	1.021	47.38		-3.8	-18.3	-0.8			-3.5	-0.1	-0.8	
76	-572.2	1.274	48.02		104	-551.6	1.055	47.48		-3.6	-17.2	-1.1		N570	-3.6	2.4	-0.5	P400
77	-571.9	1.274	48.00		105	-551.3	1.052	47.50		-3.6	-17.4	-1.0			-3.5	2.5	-0.6	
78	-572.0	1.274	48.01		106	-551.2	1.051	47.49		-3.6	-17.5	-1.1			-3.5	2.5	-0.6	
79	-571.9	1.273	48.02		107	-551.3	1.052	47.51		-3.6	-17.4	-1.1			-3.5	2.6	-0.6	
80	-571.7	1.275	48.02		108	-551.2	1.054	47.50		-3.6	-17.4	-1.1			-3.5	2.1	-0.6	
82	400.7	1.262	47.70		109	385.9	1.041	47.45		-3.7	-17.5	-0.5		P400	-3.6	2.8	-0.7	N400
83	400.7	1.260	47.69		110	385.9	1.039	47.43		-3.7	-17.6	-0.6			-3.6	2.2	-0.7	
84	400.8	1.266	47.69		111	386.0	1.045	47.41		-3.7	-17.4	-0.6			-3.7	2.1	-0.6	
85	400.6	1.259	47.68		112	386.0	1.043	47.42		-3.7	-17.2	-0.6			-3.7	2.4	-0.6	
86	400.8	1.265	47.69		113	386.1	1.048	47.41		-3.7	-17.2	-0.6			-3.6	2.6	-0.7	
87	400.8	1.261	47.69		114	386.1	1.040	47.44		-3.7	-17.5	-0.5			-3.6	0.1	-1.0	N570
88	572.3	1.294	48.00		115	551.2	1.070	47.76		-3.7	-17.3	-0.5		P570	-3.6	1.0	-1.0	
89	571.8	1 295	48.03		115	551.2	1.073	47 72		-3.6	-17.1	-0.7			-3.4	0.7	-0.9	
90	571.5	1.293	48.06		117	551.3	1.073	47.72		-3.5	-17.0	-0.7			-3.6	0.4	-1.0	
91	571.0	1 294	48.09		118	551.1	1.071	47.72		-3.5	-17.3	-0.8			-3.6	0.6	-0.9	
92	571.4	1 292	48.09		110	551.0	1.072	47.71		-3.5	-17.0	-0.8			-3.6	0.7	-1.0	
92	571.1	1.292	48.09		119	551.0	1.072	47.72		-3.5	-17.0	-0.8			-3.6	0.7	-1.0	

Tuning the damping resistor

Before tuning