

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

The Usage of High Voltage Amplifiers to Set up Reference Calibrators

for Combined and Composite Voltages up to 1 kV

Mohamed Agazar, Hanane Saadeddine, Laboratoire National de métrolgie et d'Essais, 1 Rue Gaston Boissier, 75015 Paris, France

Introduction

An approach to set up reference calibrators to generate combined voltages, using voltage amplifiers, has been demonstrated. Four high voltage amplifiers were tested and studied. Measurements and experiments have shown that this approach could be used to set up calibrators for combined voltages, at least up to 1 kV. The advantage is the flexibility to generate or combined wave shapes (combination of AC, DC, distorted shapes, double exponential impulses such as lightening and switching impulses). This method could be beneficial to the fields where impulses, combined or not with DC or AC voltages, need a reference calibrator to calibrate digitizers. This method, relatively cheaper and simple to develop, reaches high metrological performance. For example, for lightning impulses up to 900 V, the uncertainties are lower than 0.2 % for the peak voltage, 1 % for the front time and 0.5 % for the time to half value. The traceability to the international system of units can be ensured by characterizing the gain using a step response, followed by the convolution technique.

	and SI but need one electrical	No calibrators for superimposed wave shape do not exist yet or the market		
0.84 μs <t1< few="" μs<br="">40 μs<t2< 60="" μs<br="">According to IEC60060-1&2</t2<></t1<>	Switching Impulses (SI) 10 μs <tab< 300="" μs<br="">1000 μs<t2< 4000="" μs<br="">According to IEC60060-1&2</t2<></tab<>	Impulse superimposed to AC According to IEC60060-1&2	Impulse superimposed to DC According to IEC60060-1&2	

One electrical block to cover all the impulse types and all the superimposed wave shapes : High voltage amplifier

Reference calibrator principle

Amplifier :		A	В	С	D
Model		APEX	Newton	Trek	Adamietz
Туре		LPA194	LPA400	PZD2000	HVAB-0.9-0.2A
Voltage Peak (Vpp)		900	800	4000	900
Slew rate (V/µs)		2000	350	750	2000
Peak current (mA)		200	50	400	100
Gain		-100	100	200	150
Bandwidth (kHz)		1400	100	60	500
DC offset (mV)		300	150	800	250
Operating temperature (°C)		0-85	0-40	0-40	20-30
Open Loop Gain (d	Open Loop Gain (dB)		100	100	100
Input impedance (kΩ)		0.05	10	25	0.05
Shapes	Amp	olifier B	Amplifie	r C	Amplifier A & D
Shapes DC and AC	Amp 80	olifier B D0 Vpp	Amplifie 3700 Vp	r C	Amplifier A & D 900 Vpp
Shapes DC and AC Short LI (0.84 μs)	Amp 80 50 V	blifier B 00 Vpp / - 250 V	Amplifie 3700 Vp NO	r C p	Amplifier A & D 900 Vpp 50 V- 900 V
Shapes DC and AC Short LI (0.84 μs) Long LI (1.56 μs)	Amp 80 50 V 50 V	blifier B 00 Vpp / - 250 V V- 250 V	Amplifie 3700 Vp NO NO	r C	Amplifier A & D 900 Vpp 50 V- 900 V 50 V - 900 V
Shapes DC and AC Short LI (0.84 μs) Long LI (1.56 μs) SI	Amp 80 50 V 50 V 50 V	Difier B 00 Vpp / - 250 V / - 250 V / - 800 V	Amplifie 3700 Vp NO NO 300 V- 370	r C p 0 V	Amplifier A & D 900 Vpp 50 V- 900 V 50 V - 900 V 50 V - 900 V
Shapes DC and AC Short LI (0.84 μs) Long LI (1.56 μs) SI Superimposed	Amp 80 50 \ 50 \ 50 \	Difier B D0 Vpp / - 250 V / - 250 V / - 800 V Yes	Amplifie 3700 Vp NO NO 300 V- 370 Only for 3	r C p 0 V SI	Amplifier A & D 900 Vpp 50 V- 900 V 50 V - 900 V 50 V - 900 V
Shapes DC and AC Short LI (0.84 μs) Long LI (1.56 μs) SI Superimposed Lowest rise time	Amp 80 50 \ 50 \ 50 \ 1	olifier B 00 Vpp / - 250 V - 250 V - 250 V / - 800 V Yes ,2 μs	Amplifie 3700 Vp NO NO 300 V- 370 Only for 5 5,5 μs	r C p 0 V SI	Amplifier A & D 900 Vpp 50 V- 900 V 50 V - 900 V 50 V - 900 V 50 V - 900 V 900 Vpp
Shapes DC and AC Short LI (0.84 μs) Long LI (1.56 μs) SI Superimposed Lowest rise time Accuracy of voltage	Amp 80 50 V 50 V 50 V 1	Difier B00 Vpp/ - 250 V√ - 250 V√ - 250 V/ - 800 VYes,2 μs0,2 %	Amplifie 3700 Vp NO NO 300 V- 370 Only for 5 5,5 μs 0,2 % V	r C p 0 V SI	Amplifier A & D 900 Vpp 50 V - 900 V 0,8 μs 0,2 %

Solution and results

Compensation of load impedance is needed for such amplifiers because the output impedance is not 50 Ω

Characterization of amplifier D

900

Testing repeatability of amplifier D for LI/SI with comparison to KAL1000 and RIC22

Testing amplifier D at DC/AC voltages: stability over 2.5 hours at 250 V

T1, T2 and Tp errors of the amplifier D (LOAD = $1 M\Omega / 40 pF$)

Acknowledgements

This research was carried out within the Joint Research Project 19NRM07 HV-com². The project has received funding from the EMPR, co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.