

Modular wideband high voltage divider

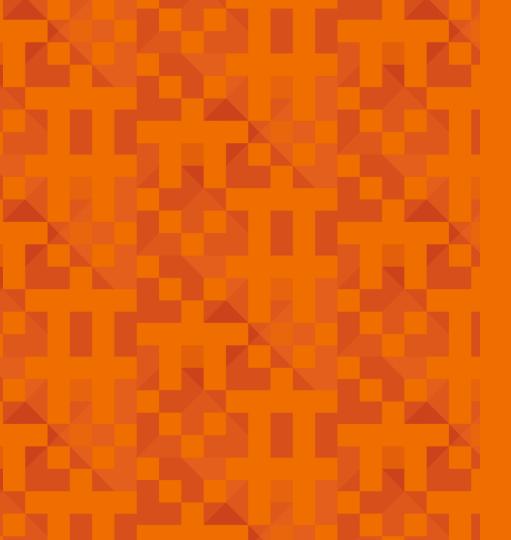
VTT

Jari Hällström (VTT) et. al

16/06/2023 VTT – beyond the obvious

Result of co-operation within HV-com² project

J. Hällström¹, M. Agazar², S. Boonants⁸, S.E. Caria^{3,4}, S. Dedeoğlu⁵, A.-P. Elg⁶, T. García^{7,} **J. Havunen**¹, K. Lahti⁸, J. Meisner⁹, A. Merev⁵, S. Özer⁵, **S. Passon**⁸, P. Roccato³, and J. Rovira⁷


¹VTT, Finland, ²LNE, France, ³INRIM, Italy, ⁴Politecnico di Torino, Italy, ⁵TUBITAK, Turkey, ⁶RISE, Sweden, ⁷LCOE, Spain, ⁸Tampere University, Finland, ⁹PTB, Germany

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

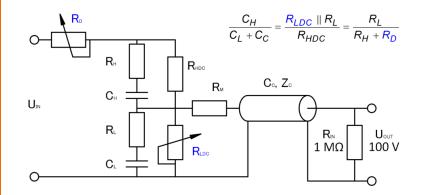
This project (HV-com²) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

Design

- Target specifications

- Topology
 High-voltage arm
 Low-voltage arm
 External damping resistor

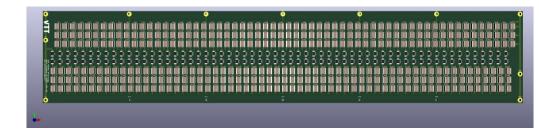
VTT

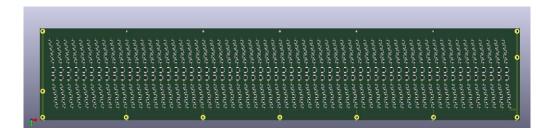

Target values

	Target	2x100 kV
Maximum peak input voltage:	200 kV	200 kV
Scale factor	1000:1	2000:1
HV capacitance	500 pF	425 pF
HV resistance	1000 MΩ	1.2 GΩ
Insulation	Gas, preferably air	Air

Nominal values

Number of modules:	1	2	4
Maximum peak input voltage:	100 kV	200 kV	400 kV
Scale factor	1000:1	2000:1	4000:1
HV capacitance (C _H):	850 pF	425 pF	212 pF
HV resistance (R _{HDC}):	600 MΩ	1.2 GΩ	2.4 GΩ
Internal damping (R _H):	120 Ω	240 Ω	480 Ω
External damping (R _D):	125 Ω	250 Ω	500 Ω
LF time constant (C _H R _{HDC}):		0.5 s	
HF time constant (C _H R _H):		0.2 µs	



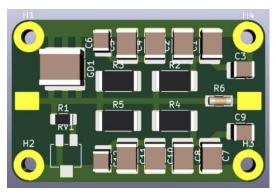


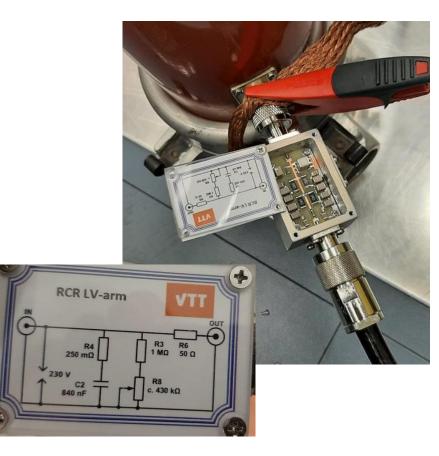
High-voltage arm PCB

Size

- 95 mm x 500 mm
- Capacitance: 850 pF
- Components
 - Film resistors:
 - Existing module: 25 ppm/K, 200 V
 - 2 ppm/K direct replacement possible
 - Capacitors:
 - NP0, 30 ppm/K, 1 kV
 - With damping resistors in series
- Nominal voltage
 - 100 kV
 - PCBs can be stacked for higher voltage rating

100 kV prototype


Impedance

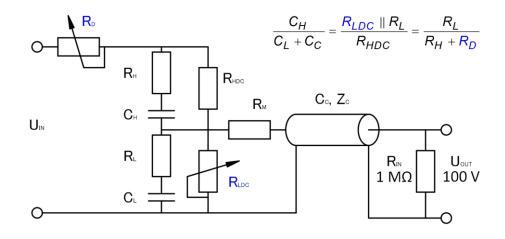

- Resistance: 600 MΩ
- Capacitance: 850 pF
- Maximum voltage
 - DC: 100 kV
 - AC_{RMS}: 70 kV
 - Impulse peak: 100 kV
- Mechanical
 - Diameter: 140 mm
 - Length: 590 mm
 - Weight: ?? kg
 - BT Temperature sensor inside

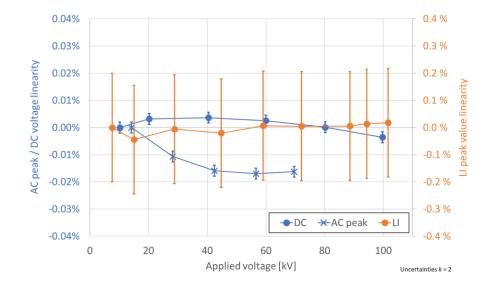
Low-voltage arm and cable

- Adjustable resistance
 - to match AC and DC scale factors
- N-connectors
- Low-loss Ecoflex 10 PLUS cable
 - 100 % shield coverage

VTT

External damping

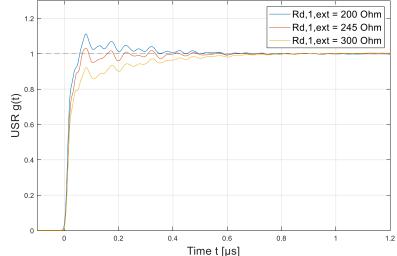

- Needed to optimize response for rise-time < 1 µs</p>
- Allen Bradley ceramic resistor discs
- Nominal resistance c. 150 Ω


Tuning for flat frequency response

- Frequency response is sensitive to changes in cable capacitance ($C_{\rm C}$) and input impedance of the metering instrument ($R_{\rm IN}$).
 - Capacitive ratio dominates between 0.3 Hz and 800 kHz
 - Trimmer R_{LDC} adjusts response < 0.3 Hz.
 - External damping resistor (R_D) adjusts response > 800 kHz.

Linearity (100 kV)

 Voltage linearity of the divider was tested with DC, AC, and LI (lightning impulse)



Step response (200 kV)

Adjustment by changing the front resistor value

Unit step response g(t) for different external damping resistor values

Comparison @PTB (400 kV)

- Composite
 - DC and LI
 - DC and SI
 - AC and LI
 - AC and SI
- CombinedAC and LI

See poster

Conclusions

- Designed and built using off-the-shelf components connected massively in series and parallel.
- Can be used also for calibration of universal dividers used during combined and composite voltage testing.
- First characterization of 100 kV and 200 kV systems show that the measurement uncertainty is lower than 0.1 % for the test voltage value for all voltage types.
- The 200 kV divider is tested PD free up to its nominal voltage.
- The 400 kV setup has been successfully used as the reference system in a comparison with commercial measuring systems.
- Proper metrological characterization still to be done...

... and then some more related progress:

- FFII, duplicate design
- TUBITAK, duplicate design with more rugged housing
- RISE, alternative design based on PP foil capacitors
- LNE, alternative design based on PP film capacitors
- PTB, alternative design based on PP capacitors

beyond the obvious

Jussi Havunen jussi.havunen@vtt.fi +358 50 590 6536 @VTTFinland

www.vtt.fi