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Advanced practical model for describing dynamic forces

1) Motivation:

➢Sinusoidal-based calibration according to DKD 3 -10

➢Kelvin-Voigt model

➢Transducer is modeled as a head mass which is connected to its base mass by 

a spring of constant 𝑘𝑓, and a damper 𝑏𝑓. 

➢ Low-resolution,  low speed

➢Unstable model parameters

➢ rocking motion, the dominant source of uncertainty

➢Solution: Averaging over all points on the surface ???  

𝑆𝑓 =
𝑈𝑓

𝑎𝑡(𝑓). [ 𝑚𝑎 +𝑚𝑖 + 𝑚𝑡. 𝑘0 ]

𝐾𝑓 = 2𝜋. 𝑓0
2. 𝑚a +𝑚i + 𝑚t ∙ 𝐾0

𝑏𝑓 =
∆𝑓

𝑓0
𝑘𝑓 . 𝑚a +𝑚i + 𝑚t ∙ 𝐾0 =

1

𝑄
𝑘𝑓 . 𝑚a +𝑚i + 𝑚t ∙ 𝐾0

∆𝑓

𝑓0
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Acceleration Measurement: sided  

Sensor: Laser / Piezoelectric

No. of signal: 1 Top / 1 Bottom

Acceleration Measurement : axial  

Sensor : Laser / Piezoelectric

No. of signal : 24 Top / 1 Bottom

1) Motivation:

• Excitation signal: Periodic chirp 

• ARMAX and Box-Jenkins for 

fitting

• Special setup configuration

• Significantly better results

• Excitation signal: Sinusoidal

• No information about the rocking motion

• Unstable model parameters
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Advanced practical model for describing dynamic forces

2) Developing a new measurement approach

Top viewTop view

Acceleration Measurement : sided

Sensor : Laser / Laser

No. of signals : 24 Top / 16 Bottom 

➢ Applicable to all types of the calibration assembly

➢ Good understanding of the rocking motion 

➢ High-resolution, high speed

➢ Periodic chirp excitation as an alternative to sinusoidal

➢ High amount of generated data

➢ Data can be fed into ANN

➢ Calibration with higher degree of the automatization
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3) Examination and understanding of the generated data

Frequency domain

➢ Fitting model selection
❖ Akaike Information Criterion (AIC) 
❖ Bayesian Information Criterion (BIC) 

Curve of best fit: weighted Linear sum of three 
Lorentzian functions with different parameters
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3) Examination and understanding of the generated data

Frequency domain

1

22

1
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Investigations in the frequency domain:

➢ Subject to leakage effect

➢ Initialization of the values in the fitting model 

➢ Fitting model gets stuck in local minima instead of global minima

➢ Weakness to generalization for all recorded signals

Advanced practical model for describing dynamic forces

3) Examination and understanding of the generated data

Investigations in the time domain:

➢ Using RMSE (Root Mean Square Error) and MAE (mean absolute error) metrics to calculate deviations for each 

signal in comparison to the average acceleration on each surface 

𝑀𝐴𝐸 =
1

𝑛


𝑡=1

𝑛

𝑎𝑡 − ො𝑎𝑡𝑅𝑀𝑆𝐸 =
1

𝑛


𝑡=1

𝑛

(𝑎𝑡 − ො𝑎𝑡)
2
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n = 4096

𝑎𝑡 : acceleration for a grid point

at given time t 

ො𝑎𝑡 : average acceleration of 

all grid points at given time t

Disadvantage:

Mean values include outliers

Advanced practical model for describing dynamic forces

𝑀𝐴𝐸 =
1

𝑛


𝑡=1

𝑛

𝑎𝑡 − ො𝑎𝑡

𝑅𝑀𝑆𝐸 =
1

𝑛


𝑡=1

𝑛

(𝑎𝑡 − ො𝑎𝑡)
2

3) Examination and understanding of the generated data

Time domain
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25 kN HBM Force Transducer

Top Mass:  7 kg
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MAERMSE

3) Examination and understanding of the generated data

Time domain
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25 kN HBM Force Transducer

Top Mass:  1 kg
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MAERMSE

3) Examination and understanding of the generated data

Time domain
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Top Mass:  4 kg

20 kN GTM Force Transducer
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MAERMSE

3) Examination and understanding of the generated data

Time domain
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Top Mass:  1 kg

20 kN GTM Force Transducer

Shaker 
Armature

Laser beam

Mass

Transducer

Mirror

Plate

Shaker 
Armature

Laser beam

Mass

Transducer

Mirror

Plate

Advanced practical model for describing dynamic forces

MAERMSE

3) Examination and understanding of the generated data

Time domain
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4) Artificial Neural Networks (ANN) for signal modeling

➢ Alternative to traditional approaches

➢ ANN outperform other Machine Learning ML methods

➢ Infer knowledge from the data without explicit programming 

➢ Ability of artificial neural networks ANN

❖ Anomalies detection in signals 

❖ Filtering anomalies arithmetically

ෝ𝑦 𝑋 = 𝜎(𝑊𝑋 + 𝑏)

• ෝ𝑦 network prediction

• 𝑋 is the matrix of input features 

• 𝑊 matrix of weights 

• 𝑏 bias vector

• 𝜎 is a nonlinear activation function 
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4) Artificial Neural Networks (ANN) for signal modeling

➢ Choice of an appropriate network architecture

➢ Acceleration values in the time domain over the time 𝑇 can be considered as a sequence data

𝑥 = (𝑥1, 𝑥2, 𝑥3, … 𝑥𝑇−1, 𝑥𝑇)

Zoom

𝑥𝑡0

(𝑥1,… 𝑥𝑡0−2 , 𝑥𝑡0−1) (𝑥𝑡0 , 𝑥𝑡0+1,…, 𝑥𝑇)

Doing so for all acceleration 

signals recorded at each 

surface, a general model 

should be learned by ANN
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4) Artificial Neural Networks (ANN) for signal modeling

Recurrent Neural Networks RNN

➢ Chain-like structure (looping mechanism in hidden layers )

➢ Good at modelling the temporal sequence of the data

➢ Data transformation (from 𝑡 to the 𝑡 + 1)

➢ Hidden states are a function of all previous hidden states.

➢ Vanishing gradient during back-propagation 

ෝ𝑦𝑡 = 𝜎(𝑈ℎ𝑡 + 𝑏𝑦)

ℎ𝑡 = 𝜎(𝑉𝑥𝑡 +𝑊ℎ𝑡−1 + 𝑏ℎ)
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4) Artificial Neural Networks (ANN) for signal modeling

Long Short-Term Memory LSTM

❖ Variant of the RNN networks

❖ Mitigation of the short-term memory problem using gating mechanisms

❖ Information are transmitted through the LSTM cells-chain via the cell state Ct
❖ Information can be optionally added / removed  by input gate / forget gate

❖ Sigmoid neural layers enable the cells to optionally let data pass through or dispose.

❖ Output gate decides which data should be sent to the next cell

❖ Learning long-term dependencies 

❖ Deleting irrelevant information
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4) Artificial Neural Networks (ANN) for signal modeling

Gated Recurrent Unit GRU

❖ Implement the gating mechanism to eliminate the vanishing gradient

❖ Two gates control the data flow 

❖ Update gate keeps information from time steps long ago

❖ Update gate determines how much of them needs to be passed to the future

❖ Reset gate removes irrelevant information 

❖ GRUs outperform LSTM on some tasks in terms of speed and generalization  
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4) Artificial Neural Networks (ANN) for signal modeling

Bidirectional Recurrent Neural Networks BRNN

❖ Recorded acceleration signal includes whole data also in the future 

❖ Future values exploitation 

❖ Training simultaneously in the positive and negative time directions

❖ Using all available input information

❖ Robust against anomalies and outliers

❖ Combining RNNs (LSTM and GRU)

❖ Accessing long-range data in both input directions
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5) Recommendations and further work

➢ Rocking movement of the dynamic force measurement setup as a dominant source of uncertainty 

must be investigated precisely

➢ Simple averaging models can not be applied to all calibrations assemblies 

➢ New evaluation method based on utilizing ANN can be used to better characterization of force 

transducers and reduce measurement uncertainty 

➢ Black-Box nature of the ANN introduces a new uncertainty contribution

❖ Imperfect training 

❖ Systematic errors 

❖ Sampling noise

❖ Unexpected shifts in the data

➢ Uncertainty quantification of ANN is motivated for further work

❖ Bayesian neural networks 

❖ Dropout-based methods 

❖ Ensemble techniques 
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