

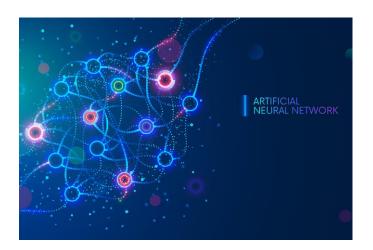
ComTraForce Project

Advanced practical model for describing dynamic forces

Davood Mirian, 1.23 Force Measurement Technology Final public workshop, 24. February 2022

Outlines

- 1. Motivation: Kelvin-Voigt model
- 2. Developing a new measurement approach
- 3. Examination and understanding of the generated data :
 - Frequency domain
 - Time domain
- 4. Artificial Neural Networks (ANN) for signal modeling:
 - Recurrent Neural Networks (RNN)
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Unit (GRU)
 - Bidirectional Recurrent Neural Networks (BRNN)
- 5. Recommendations and further work



Nationales Metrologieinstitut Davood Mirian

Advanced practical model for describing dynamic forces

1) Motivation:

- Sinusoidal-based calibration according to DKD 3 -10
- Kelvin-Voigt model
- Transducer is modeled as a head mass which is connected to its base mass by a spring of constant k_f, and a damper b_f.

 $\cdot K_0$

3

- Low-resolution, low speed
- Unstable model parameters

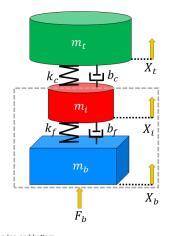
Uf

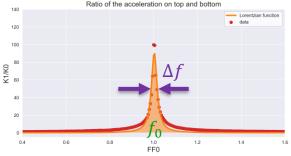
- > rocking motion, the dominant source of uncertainty
- Solution: Averaging over all points on the surface ???

$$S_{f} = \frac{1}{a_{t}(f) \cdot [(m_{a} + m_{i}) + (m_{t} \cdot k_{0})]}$$

$$K_{f} = (2\pi \cdot f_{0})^{2} \cdot [m_{a} + m_{i} + (m_{t} \cdot K_{0})]$$

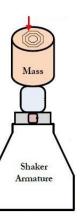
$$b_{f} = \frac{\Delta f}{f_{0}} \sqrt{k_{f} \cdot [m_{a} + m_{i} + (m_{t} \cdot K_{0})]} = \frac{1}{Q} \sqrt{k_{f} \cdot [m_{a} + m_{i} + (m_{t} \cdot K_{0})]}$$





1) Motivation:

- No information about the rocking motion
- Unstable model parameters



- Excitation signal: Periodic chirp
- ARMAX and Box-Jenkins for fitting
- Special setup configuration
- Significantly better results

Acceleration Measurement: sided Sensor: Laser / Piezoelectric No. of signal: 1 Top / 1 Bottom

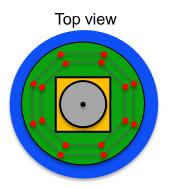
Shaker

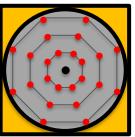
acceleration

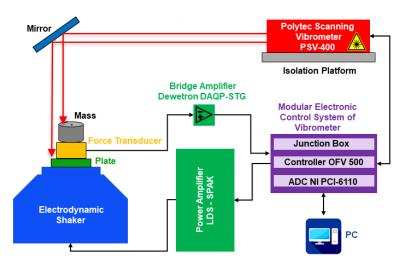
Acceleration Measurement : axial Sensor : Laser / Piezoelectric No. of signal : 24 Top / 1 Bottom

2) Developing a new measurement approach

- Applicable to all types of the calibration assembly
- Good understanding of the rocking motion
- High-resolution, high speed
- > Periodic chirp excitation as an alternative to sinusoidal
- High amount of generated data
- Data can be fed into ANN
- Calibration with higher degree of the automatization

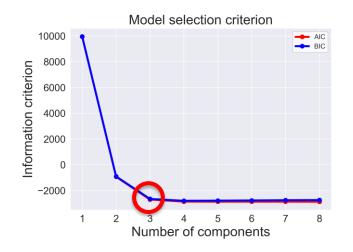


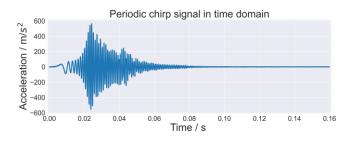




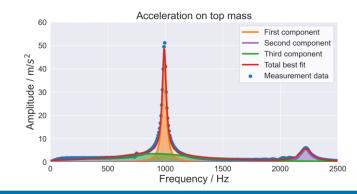
Acceleration Measurement : sided Sensor : Laser / Laser No. of signals : 24 Top / 16 Bottom

- 3) Examination and understanding of the generated data Frequency domain
- Fitting model selection
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)

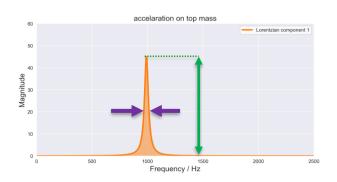


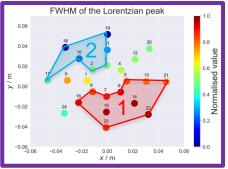


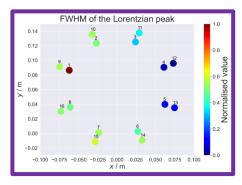
Curve of best fit: weighted Linear sum of three Lorentzian functions with different parameters

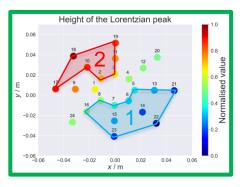


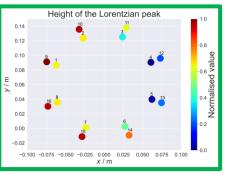
3) Examination and understanding of the generated data Frequency domain











3) Examination and understanding of the generated data

Investigations in the frequency domain:

- Subject to leakage effect
- Initialization of the values in the fitting model
- > Fitting model gets stuck in local minima instead of global minima
- Weakness to generalization for all recorded signals

Investigations in the time domain:

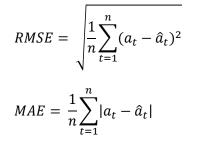
Using RMSE (Root Mean Square Error) and MAE (mean absolute error) metrics to calculate deviations for each signal in comparison to the average acceleration on each surface

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (a_t - \hat{a}_t)^2} \qquad MAE = \frac{1}{n} \sum_{t=1}^{n} |a_t - \hat{a}_t|$$

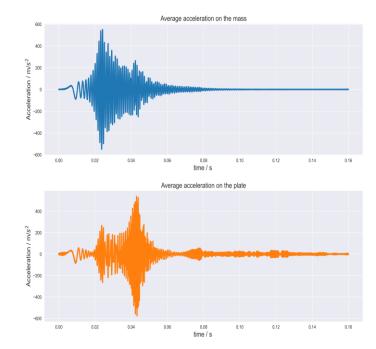
3) Examination and understanding of the generated data Time domain

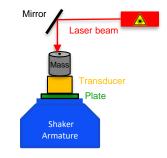
n = 4096

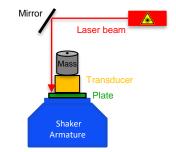
- a_t : acceleration for a grid point at given time t
- \hat{a}_t : average acceleration of all grid points at given time t



Disadvantage: Mean values include outliers







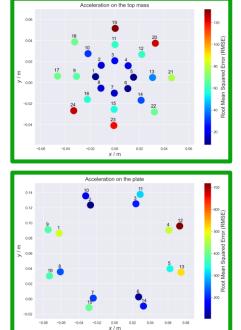
Physikalisch-Technische Bundesanstalt Braunschweig und Berlin 24.02.2023

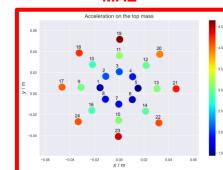
RMSE

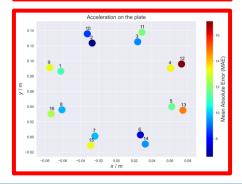
3) Examination and understanding of the generated data Time domain

Top Mass: 7 kg

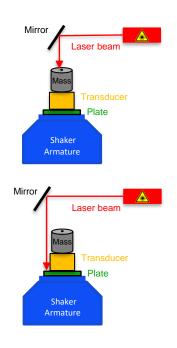
25 kN HBM Force Transducer







MAE

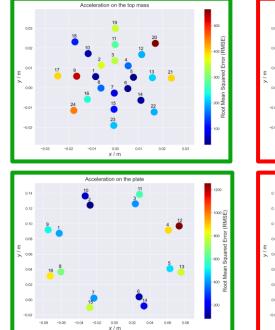


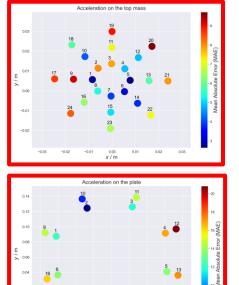
Physikalisch-Technische Bundesanstalt ■ Braunschweig und Berlin 24.02.2023

RMSE

Top Mass: 1 kg

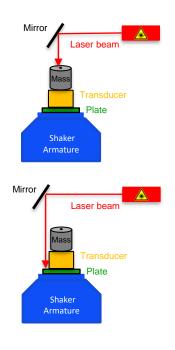
25 kN HBM Force Transducer



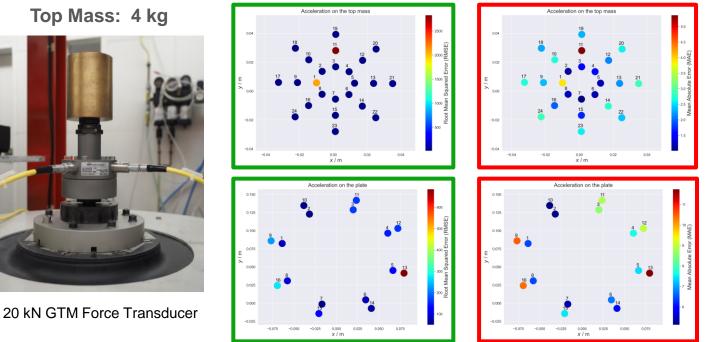


x / m

MAE



Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
24.02.2023



MAE

RMSE

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin 24.02.2023

Laser beam

Plate

Laser beam

Plate

Shaker Armature

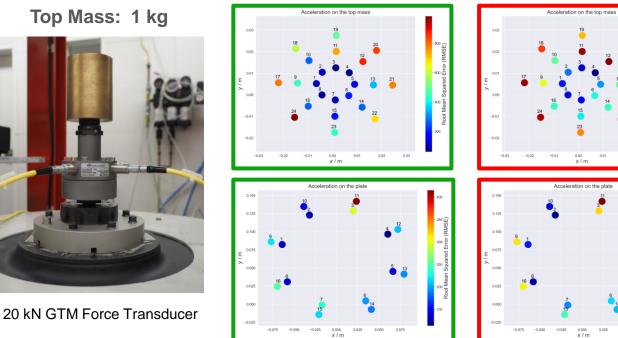
Shaker

Armature

Mirror

Mirror

3) Examination and understanding of the generated data Time domain

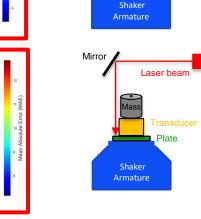


RMSE

x/m

0.000

x / m



Mirror

Laser beam

Plate

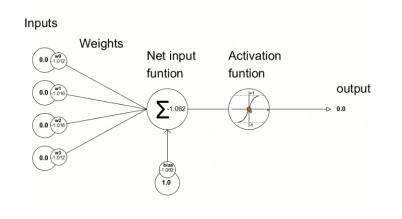
Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin 24.02.2023

4) Artificial Neural Networks (ANN) for signal modeling

- Alternative to traditional approaches
- ANN outperform other Machine Learning ML methods
- Infer knowledge from the data without explicit programming
- Ability of artificial neural networks ANN
 - Anomalies detection in signals
 - Filtering anomalies arithmetically

$$\widehat{y}(X) = \sigma(WX + b)$$

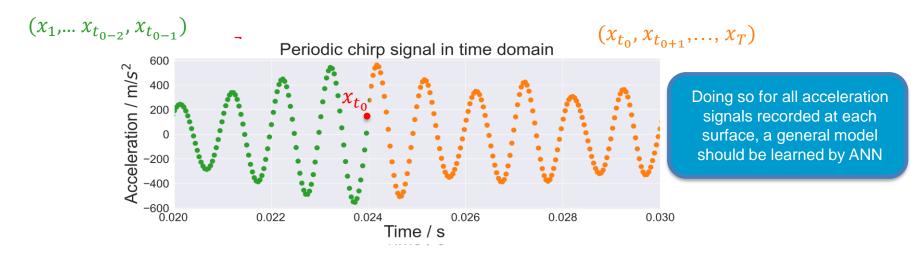
- \hat{y} network prediction
- X is the matrix of input features
- W matrix of weights
- b bias vector
- σ is a nonlinear activation function



4) Artificial Neural Networks (ANN) for signal modeling

- Choice of an appropriate network architecture
- \blacktriangleright Acceleration values in the time domain over the time T can be considered as a sequence data

 $x = (x_1, x_2, x_3, \dots x_{T-1}, x_T)$



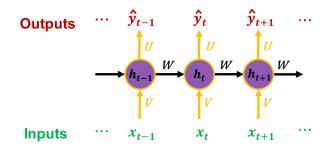
4) Artificial Neural Networks (ANN) for signal modeling Recurrent Neural Networks RNN

- Chain-like structure (looping mechanism in hidden layers)
- Good at modelling the temporal sequence of the data
- > Data transformation (from t to the t + 1)

$$h_t = \sigma(Vx_t + Wh_{t-1} + b_h)$$

$$\widehat{y_t} = \sigma(Uh_t + b_y)$$

- Hidden states are a function of all previous hidden states.
- Vanishing gradient during back-propagation



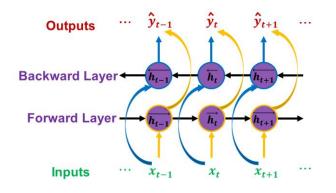
4) Artificial Neural Networks (ANN) for signal modeling Long Short-Term Memory LSTM

- Variant of the RNN networks
- Mitigation of the short-term memory problem using gating mechanisms
- ✤ Information are transmitted through the LSTM cells-chain via the cell state C_t
- Information can be optionally added / removed by input gate / forget gate
- Sigmoid neural layers enable the cells to optionally let data pass through or dispose.
- Output gate decides which data should be sent to the next cell
- Learning long-term dependencies
- Deleting irrelevant information

4) Artificial Neural Networks (ANN) for signal modeling Gated Recurrent Unit GRU

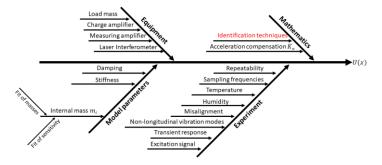
- Implement the gating mechanism to eliminate the vanishing gradient
- Two gates control the data flow
- Update gate keeps information from time steps long ago
- Update gate determines how much of them needs to be passed to the future
- Reset gate removes irrelevant information
- GRUs outperform LSTM on some tasks in terms of speed and generalization

- 4) Artificial Neural Networks (ANN) for signal modeling Bidirectional Recurrent Neural Networks BRNN
 - Recorded acceleration signal includes whole data also in the future
 - Future values exploitation
 - Training simultaneously in the positive and negative time directions
 - Using all available input information
 - Robust against anomalies and outliers
 - Combining RNNs (LSTM and GRU)
 - Accessing long-range data in both input directions



5) Recommendations and further work

- Rocking movement of the dynamic force measurement setup as a dominant source of uncertainty must be investigated precisely
- Simple averaging models can not be applied to all calibrations assemblies
- New evaluation method based on utilizing ANN can be used to better characterization of force transducers and reduce measurement uncertainty
- Black-Box nature of the ANN introduces a new uncertainty contribution
 - Imperfect training
 - Systematic errors
 - Sampling noise
 - Unexpected shifts in the data
- Uncertainty quantification of ANN is motivated for further work
 - Bayesian neural networks
 - Dropout-based methods
 - Ensemble techniques



Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

- Bundesallee 100
- 38116 Braunschweig
- **Davood Mirian**
- Telefon: 0531 592-1214
- E-Mail: davood.mirian@ptb.de
- www.ptb.de

Stand: 02/2023