

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Existing infrastructure and future requirements for dynamic force traceability in materials testing

Andy Knott

ComTraForce Public Stakeholder Workshop 24 February 2023

Work Package 1 Objectives

- Equipment
 - Review and evaluate performance of existing force measurement equipment and instrumentation
 - Review existing force calibration facilities
 - Review existing material testing machine facilities
 - Evaluate material testing facilities not supported by force calibration infrastructure
- Documents
 - Review force calibration standards
 - Review relevant non-force calibration standards
 - Evaluate test machine capabilities not supported by documented calibration procedures

Work Package 1 Objectives

- Technology roadmap to include:
 - Future requirements for improved force transfer standards
 - Future requirements for calibration methods for testing machines
- Report to take into account:
 - Realistic uncertainties
 - Results from equipment and document studies
 - Input from stakeholder committee and workshops
- Conclusions of work will result in:
 - Scope of procedures to be developed
 - Design criteria for improved transfer standards

Equipment

- Review of available transducers and instrumentation
 - Strain gauge and piezoelectric force transducers
 - Repeatability
 - Reproducibility
 - Reversibility
 - Creep
 - Zero shift
 - Long-term drift
 - AC and DC ratio meters, digitising units, charge amplifiers
- Review of available calibration facilities
 - Generally only static capabilities

Existing Force Standards

	Static Force		Continuous Force	Dynamic Force
Transducer Calibration	ABNT NBR 8197 ASTM E74 BS 8422 CEM ME-002	DIN 51308 DKD-R 3-3 ISO 376 VDI/VDE 2624-2.1	DKD-R 3-9	DKD-R 3-10(2)
Machine Calibration	ASTM E4 DIN 51302-2 EN 12390-4 ISO 7500-1 ISO 7500-2	ISO 4545-2 ISO 6506-2 ISO 6507-2 ISO 6508-2 ISO 14566 - Charpy		ASTM E467 DKD-R 3-10(3) ISO 4965-1 MIL-STD-1312B NASM 1312
General	DKD-R 3-10(1) EURAMET cg-4			

Existing Non-Force Standards

	Static Force	Continuous Force	Dynamic Force
Acceleration			ISO 16063-1
Alignment	ASTM E1012 EN 12390-4 ISO 23788	ASTM E1012 ISO 23788	ASTM E1012 ISO 23788
Displacement / Speed	ASTM E2309 / ASTM E2658		
Extensometry	ASTM E83 ISO 9513		
Temperature			ISO/TS 21913
Voltage	ASTM E74 ISO 376		ASTM E1942 DKD-R 3-2 ISO 4965-2

Stakeholder Input

Three user groups:

- High quality labs very competent, accredited, but dynamic not in scope
- Material testing labs modernised machines, many resonance ones
- Secondary applications rely on calibration service providers

Criticisms are that:

- ISO 4965 / ASTM E467 contain no traceability / uncertainty
- Verification procedures not clearly defined, open to interpretation, particularly related to strain gauging and alignment
- For low frequency structural testing, DKD-R 3-10 summarises methods but gives no explicit procedures / uncertainty model
- No specifications relating to adaptors / clamping affecting sinusoidal form
- Temperature not properly considered in dynamic standards

Main ranges: 20 kN – 100 kN, 1 Hz – 200 Hz

Stakeholder Input

- The standards have no uncertainty budget and no dynamic traceability
- The standards are not precise enough and enable interpretations
- It would be good to use flexible transfer standards with traceable, comparable commercial transducers inside - agreed with the principle of mass- and stiffness-adapters developed within WP 2 and 4
- ISO 23788 concerning alignment problems does not meet the needs of end-users
- The adaptation of the test specimen within the testing facility and its influence on the test
 results is not investigated enough or described in any standard
- Traceable calibration or verification possibilities for special applications are necessary for single transducers realised in dynamic force reference machines
- The idea of digitisation and the advantages of digital twins could enable future possibilities in the use of material testing facilities
- Temperature influences should be investigated in more detail
- Calibration procedure for piezoelectric transducers

Draft Roadmap

<u>ComTraFo</u>	rce				Roadmap	
Drivers & Benefits		r y dynamic (continuous, si corporating uncertainty f		2. Materials Testing Provide traceability to the SI for dynamic force and strain to improve accuracy in the area of materials testing		
Targets		Improved testing machine verification / calibration (time influence)	Calibration infrastructure for piezoelectric force transducers	Traceability & uncertainty (< 0.5 %) for fatigue machines, including resonance ones	Traceability for high- frequency industrial applications e.g. automotive crash testing, acoustics, fatigue testing	
Deliverables	Develop explicit procedures / uncertainty model for low frequency structural testing	Clearly defined continuous / dynamic force machine verification procedures	guidance on effect machine / and te specimen contin	s of alignment path	elop standardised traceability n for medium/high frequency amic testing using common commercial adaptors / transducers	
Technologies	Continuous measurement characterisation	Characterisation of alignment effects	Characterisation of temperature effects		Dynamic temperature neasurement	
Enabling Science	Traceable static force measurements	enects	ellects			
Timeline:	2020	2021	2022	2023	2024 202	

Department for Science, Innovation & Technology

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Science, Innovation and Technology (DSIT).