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1 Executive Summary 
The aim of this report is to describe the preliminary version of 

a digital metrological twin (DMT) of a force measuring device for 
static, continuous and dynamic forces. In almost all major 
manufacturing industries such as aerospace, automobile, and 
construction, one of the most important activities is 
material/mechanical testing [1], [2]. Material/mechanical 
testing allows the manufacturer to understand, quantify and 
check whether their product is suitable for a particular 
application. This process involves the measurement of force/s 
acting on a product usually by means of a force measuring 
instrument called a load cell. 

With the inevitability of the fourth industrial revolution, 
coined as Industry 4.0, virtual tools and models of measuring 
instruments called digital twins (DT) will be required in 
manufacturing and inspection processes. A DT is generally 
defined as “a virtual model used to facilitate detailed analysis 
and monitoring of physical or psychological systems” [3], see 
Figure 1. DT’s purpose is not to mirror but rather to ensure the 
“health,” integrity and reliability through monitoring, prediction 
and optimisation of its physical asset using data analytics, 
artificial intelligence, machine learning, among others. 

 
Figure 1 Digital Twin Layout 

Sensors placed on the physical asset, for example a load cell, 
could acquire real-time data through the Internet of Things (IoT) 

data
monitor
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predict
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network. The data are then used either in simulations or 
dashboards of information which will act as the load cell’s DT. 
The DT is capable of providing next-level prediction, monitoring, 
and recommendation to conduct real time root cause analysis 
to avert failures of the load cell [4], [5], [6] and [7]. 

Creep is a recognised phenomenon in load cells that has a 
tendency to limit the reliability and accuracy of the instrument. 
It is the “change in output occurring with time while under 
constant load and with all environmental conditions and other 
variables also remaining constant” [14]. 

Different geometrical models of the force transducer were 
used for different DT models. Simplified models of the 
cylindrical shape load cell were used to perform analytical 
stress-strain analysis of the transducer under stating loading 
and to determine creep strain rate of transducer materials. 
Another reason for transducer geometry variation is the 
transducer adjustment. For the static calibration test the 
transducer with the ringlike masses mounted on the shaft 
shoulders was used. During the project, the calibration setup 
was improved in the way the shaft shoulders were replaced with 
holes directly drilled in the selected spot of the transducer. The 
measurement with the improved transducer could be taken also 
without masses or alternatively with cube masses [33]. The 
improved set up without masses was used for continuous as 
well as dynamic models, see sections 4 and 5 respectively.  

Section 2 summarises the way in which creep strain can be 
used to monitor and optimise load cell behaviour in the DT 
context. Findings presented in this section indicate that the 
major source of creep in load cells is the carrier matrix of the 
strain gauge, although very small - a few ppm per hour, and that 
the Larson-Miller Parameter equation can be used to support 
the development of the DT for the load cell. 
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Section 3 describes the development of a DT concept with a 
focus on a metrological application case. To enable the 
application of DT concept in metrological field the input 
parameters were read from Digital Calibration Certificate (DCC) 
of a force measurement device. This enabled that parameters 
were related to a SI unit as well as measurement uncertainty. 
The DT FEA models were validated with the traceable calibration 
measurements, performed at PTB. The issue of data storage was 
addressed in the concept but not realised at this stage.  

Additionally, the communication strategies based on Python 
that can be employed in a DMT of a load cell are discussed, along 
with potential use of artificial intelligence (AI) tools that could 
be used in the future to improve the force sensor output and its 
associate measurement uncertainties. 

Section 4 reports on the development and validation of a FEM 
model describing the static calibration model of the load cell. 
The FEA static model was found to be in good agreement with 
the analytical formulation, however large discrepancies exist 
between ether models and experimental results, which include 
additional error sources, such as: amplifier and data acquisition 
errors, temperature, sensitivity stability, interpolation 
resolution [8]. Nevertheless, FEM model is in particular useful to 
investigate the effect of the shape of the load cell on the strain 
measurements as well as the effect loading conditions, 
identified as bending moments, tilt and side forces. Even though 
the static calibration measurement procedure is designed to 
evaluate the transducers with minimum creep effect, the creep 
will inadvertently affect the measurement accuracy. 

Section 5 addresses the thermal creep associated with the 
loading and unloading operations. As previously recorded in 
literature, the thermo-mechanical effect is responsible with 
heating and cooling the load cell during loading and unloading 
operation, respectively. The findings are in agreement with the 
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current knowledge related to the creep behaviour experienced 
in force transducers. The creep evaluated in [8] is governed by 
the strain gauge relaxation behaviour, which in this case was not 
adequately matched with the thermal creep of the load cell (see 
the creep graphs presented in section 5). 

Section 6 presents the FEM model that is used to evaluate the 
sensor behaviour under cyclic loading. The FEM simulations 
were able to reproduce the range of temperature variations 
previously reproduced experimentally, which once again are 
attributed thermomechanical effects. Here, the effectiveness of 
the simulations was hindered by the computational limitations 
required by FEM. 

Section 7 concludes the report, summarising briefly the main 
findings of the research and mapping the way in which the FEA 
models can be used in the development of numerical oriented 
force uncertainty models. 
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2 Creep of load cell materials 
Creep occurs in all materials in stages; however, they differ 

on how fast it occurs. The three typical stages of creep are 
shown in Figure 2 [9]: 

 
Figure 2 A typical creep curve with three stages 

It is acknowledged that creep is mainly evaluated through its 
creep rate in the secondary stage due to its dominance and long-
term occurrence in the creep curve compared to the other 
stages [10]. Engineers use this information as a point of 
performance comparison between materials and design for 
safety assurance by predicting creep behaviour for a particular 
application. Engineers make use of steady state creep rate 𝜀ċr 
for prediction and extrapolation at different temperatures, and 
commonly used form of the equation is: 

𝜀ċr = 𝐾𝜎𝑛𝑒
(

−𝑄c
𝑅𝑇

)
 (2.1) 

known as the power law equation where 𝐾 is a constant, σ is the 
applied stress, 𝑛 gives the stress dependence of the strain rate, 
𝑄cis the creep activation energy, 𝑅 is the universal gas constant, 
and 𝑇 is the absolute temperature [11]. However, the constants 
𝐾 and 𝑛 are determined using the existing steady state creep 
rate obtained from creep data at different stresses and 
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temperatures. This equation is generally used for dislocation 
and diffusion creep, frequently occurring in metals [12]. 

Another popular approach is using the Larson-Miller 
Parameter to determine the steady state creep rate. Similar to 
the power law, it uses existing steady state creep rates obtained 
from creep data at different stresses and temperatures. The 
LMP is given as: 

LMP = 𝑇 (𝐶 − 𝑙𝑜𝑔(𝜀ċr)) (2.2) 

where 𝑇 is the temperature, 𝜀ċr is the steady state creep rate 
and 𝐶 as the empirical constant which can be obtained from two 
creep tests conducted at different temperatures but same 
stress. J. Li and A. Dasgupta’s work provided the value of 𝐶 as 
- 3.0 [12]. A master curve is then plotted to show the 
relationship between the applied stress and LMP. The curve is 
then used to extrapolate the value of LMP at any given stress to 
determine the steady state creep rate at any temperature: 

𝜀ċr = 10𝐶−
LMP

𝑇  (2.3) 

The dependence of creep in polymers on temperature and 
time makes the LMP suitable for use with polymers [12]. 

2.1 Geometrical set up of load cell and 

material properties 

This research chose the strain gauge load cell as it is widely 
used for its accuracy and lower unit cost compared with other 
types of load cells [13], and it has been the primary focus of the 
development of the OIML Recommendation 60 [14]. To 
investigate the dominant source of creep in strain gauge load 
cells, the load cell was isolated into two major components: the 
cylindrical shape spring element and the strain gauge. The strain 
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gauge will be represented by its carrier matrix since the 
measuring grid does not contribute to the creep on the strain 
gauge, and the carrier matrix makes up most of the strain gauge 
[2], [16]. For simplicity, the adhesive of the strain gauge was 
assumed to be part of the carrier matrix and made of the same 
material [15], see Figure 3. 

 
Figure 3 Strain gauge load cell by Hunt et al showing applied loads and 

resulting elongations 

The basic specifications of the hypothetical 0.5 MN strain 
gauge load cell used in this research are found in Table 1. 

 
Table 1 Specifications of the hypothetical 0.5 MN Load Cell 

Parameter 
Spring 

Element 
Carrier 

Matrix 

Shape cylinder rectangular 

Material 
AISI 316 

L(N) stainless 
steel 

polyimide 

Young’s Modulus 190 GPa 2.5 GPa 

Yield Point - 69 MPa 

Height 140 mm 7.5 mm 

Diameter 43 mm - 

Width - 4.6 mm 
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Thickness - 30 µm 

2.1.1 Determination of Creep Rate in the load cell 

components at Room Temperature 

The power law given by equation (2.1) has been used to 
estimate the creep rate in the spring element of the load cell at 
room temperature. For this purpose, the experimental data 
from the work of Reith et al. [17] on the creep behaviour of 
AISI 316 L(N) stainless steel was used, which allowed the 
estimation of the creep rate. 

The least-square fit method was used in determining the 
constants of the power law since it assures a more accurate 
estimation of the constants as it uses all the data points rather 
than just selected sets [18]. The constants obtained are found in 
Table 2. 

Table 2 Summary of constants for the spring element using the least square 
fit method 

𝐾 7.38 × 103 h-1 

𝑛 6.96 

𝑄c 460 kJ/mol 

The extrapolation method by LMP was used to determine the 
creep rate in the carrier matrix given by equation (2.2). J. Li and 
A. Dasgupta used the experimental creep data of X. Wu and 
M. Pecht [19] to obtain the empirical constant C and creep rates 
of polyimide. They then used these data to develop an LMP 
Master Curve for polyimide. Here, the master curve was 
reconstructed to extract the equation of the resulting trend line, 
Figure 4. 
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Figure 4 LMP master curve for polyimide 

From the equation of the line, the LMP can be determined at 
a given stress by: 

𝑥 =
𝑦 − 𝑏

𝑎
 (2.4) 

where x = LMP, y is the applied stress, a = -0.1792, and 
b = 94.266. 

2.1.2 Equivalent Stress Acting on the Carrier Matrix 

There is a need to determine the equivalent stress acting on 
the carrier as a force or stress is exerted at the spring element. 
Figure 3 is the diagram of the load cell with its spring element 
and carrier matrix and the relationships between different 
parameters, where 𝐹1 is the force acting on the hypothetical 
0.5 MN load cell, 𝐿1 is the length of the spring element, ∆𝐿1 is 
the change in length of the spring element due to 𝐹1, 𝐴1 is the 
area of the spring element where the 𝐹1 is acting on, 𝐹2 is the 
force acting on the carrier matrix, 𝐿2 is the length of the carrier 
matrix, ∆𝐿2 is the change in length of the carrier matrix due to 
𝐹2 and 𝐴2 is the area of the carrier matrix where 𝐹2 is acting on. 
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Using the Young’s Modulus equation: 

𝐸 =
𝐹𝐿o

𝐴∆𝐿
 (2.5)  

where 𝐹 is the force applied, 𝐿o is the original length, 𝐴 is the 
area where the force is applied, and 𝐸 is the Young’s Modulus 
of the material, the value of ∆𝐿1 can be determined by 
rearranging equation (2.5) into: 

∆𝐿1 =
𝐹1𝐿1

𝐴1𝐸sp
 (2.6)   

where 𝐸sp is the Young’s Modulus of AISI L(N) stainless steel. 

Having ∆𝐿1, equation (2.7) is used to determine ∆𝐿2 of the load 
cell. 

∆𝐿2 =
∆𝐿1𝐿2

𝐿1
 (2.7) 

The force acting on the carrier matrix (𝐹2) can now be 
determined by rearranging the Young’s Modulus equation (2.5) 
into: 

𝐹2 =
𝐸cm𝐴2∆𝐿2

𝐿2
 (2.8)  

where 𝐸cm is the Young’s Modulus of polyimide. With this, 
the stress acting on the carrier matrix can now be computed by 
dividing the force on the carrier matrix (𝐹2) by the area of the 
carrier matrix (𝐴2). Keying in the stress values to equation (2.4) 
provides the corresponding LMP (Table 3). 
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Table 3 Corresponding LMP values for the force on the hypothetical 0.5 MN 
load cell 

Force on 
the Load 
Cell, (MN) 

Equivalent 
Stress on the 

Load Cell, 
(MPa) 

Equivalent Stress 
on Carrier Matrix, 

(MPa) 
LMP 

0.50 344.30 4.53 501 

0.40 275.44 3.62 506 

0.30 206.58 2.72 511 

0.20 137.72 1.81 516 

0.10 68.86 0.91 521 

2.2 Results 

The equivalent stress on the spring element is needed to 
extrapolate the creep rate using equation (2.1). This was 
determined by dividing the force applied by the area where the 
force is applied. Finally, extrapolating at the usual working 
temperature of a load cell (generally 293 K) using equation (2.1) 
with the constants in Table 2 yields the creep rates of the spring 
element at different forces and equivalent stresses. The 
experimental creep rates from Reith et al. [17] and computed 
creep rates in the spring element were compared to validate the 
constants used. It was seen that the differences in values were 
at 54 % for 923 K, 46 % for 973 K, and 230 % for 1,023 K. These 
significant differences appear at the higher stress values, 
whereas in the middle range, the stress values are well 
predicted. These differences might be due to the lack of data or 
coverage of the trend to acquire a better estimation of the 
constants, which is typical during extrapolation or from the 
errors via the experimental set-up or other factors affecting the 
outcome of the experimental results. 
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In the same manner, having the LMP makes it possible to 
extrapolate the creep rates of the carrier matrix at the usual 
working temperature of a load cell (generally 293 K) using 
equation (2.3). The computed creep rates of the spring element 
and the carrier matrix, presented in Table 3, show that the 
dominant source of creep originates from the carrier matrix. 

 
Table 4: Calculated creep rates in the spring element and carrier 

matrix at a given force on the strain gauge load cell 

Force 
on Load 
Cell (MN) 

Creep Rate in 
the Spring 

Element (h-1) 

Creep Rate 
in the Carrier 
Matrix (h-1) 

0.50 ≈ 0 (3 × 10-58) 1.95 × 10-05 

0.40 ≈ 0 (7 × 10-59) 1.88 × 10-05 

0.30 ≈ 0 (9 × 10-60) 1.80 × 10-05 

0.20 ≈ 0 (5 × 10-61) 1.73 × 10-05 

0.10 ≈ 0 (4 × 10-63) 1.67 × 10-05 

2.3 Determination of the operating parameters 

of load cells for use in the DT  

With the carrier matrix identified as the dominant source of 
creep in strain gauge load cells at room temperature, the stress-
strain curve of polyimide [20] was used to identify the strain due 
to creep before the strain gauge enters a state where it cannot 
go back to its original length/shape called plastic deformation. 

The strain was determined using equation (2.9): 

𝜀 =
𝜎

𝐸
 

 

(2.9)  
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where Ԑ is the strain at yield point (69 MPa for polyimide), 
and 𝐸 is the Young’s Modulus (2.5 GPa for polyimide). 
Therefore, the strain at which the carrier matrix undergoes 
plastic deformation is 2.76 % or 0.0276, Figure 5. Although the 
strain of the spring element is likely to be smaller, it should be 
noted that the deformation, in this case, should be governed by 
stress and not strain. The spring element will still be in the 
elastic regime at 69 MPa of stress and will not be much affected; 
however, that amount of stress is sufficient for enforcing the 
polyimide by a strain of magnitude 2.76 %. As the spring 
element is still within the elastic limit, the carrier matrix under 
a stress of 69 MPa may already be experiencing plastic 
deformation. 

 
Figure 5 Dupont's stress-strain curve of polyimide 

2.3.1 Numerical Model of the DT Load Cell for Creep Strain 

The LMP equation (2.3) served as the numerical model after 
confirming that the strain gauge’s carrier matrix is the primary 
source of creep. Equation (2.10) shows the expanded version of 
equation (2.3) by using equation (2.4) to replace LMP: 
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𝜀ċr = 10

𝐶−((

𝐹
𝐴

−𝑏

𝑎 )/𝑇)

 

(2.10) 

where 𝐹 is the force applied on the carrier matrix, 𝐴 is the area 
where the force is applied, 𝑎 = -0.1792, 𝑏 = 94.266, 𝑇 is the 
temperature, and 𝐶 = -3.0 (empirical material constant for 
polyimide). 

The area where force is applied 𝐴 and the empirical constant 
𝐶 has been predetermined and inputted in the numerical 
model, so it only requires two essential inputs to build the DT 
load cell for creep strain: the force applied on the carrier matrix 
𝐹 and temperature 𝑇, Figure 6. 

 
Figure 6 Development of the Digital Twin Load Cell for Creep Strain 

The force applied to the carrier matrix can be computed using 
the method shown in the Equivalent Stress Acting on the Carrier 
Matrix section, as it receives force measurement data in real-
time from the physical load cell. The temperature can be 
determined by attaching a temperature sensor to the load cell 
(real-time). This assumes that the spring element's temperature 
equilibrates with the carrier matrix. With all inputs available, it 
is possible to determine the creep rates to provide the creep 
strains. Creep strains were determined by multiplying the creep 
rate by how long the force is applied. The creep strains were 
plotted against the force applied to the load cell and the amount 
of time the force was applied. 
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2.3.2 Supporting the Development of the DT for Load Cell 

A DT need not be a virtual image of the physical measuring 
instrument. Instead, the resulting DT in this research is 
represented by a three-dimensional graph in terms of creep 
strain at the carrier matrix, force applied on the load cell, and 
amount of time the force is applied.  

Figure 7 was developed using Originlab 2019b. The graph 
represents the DT load cell for the monitoring of creep strain 
and illustrates the operating range of a 0.5 MN capacity load cell 
with the indication that the creep strain must not exceed 0.0276 
when used at room temperature (293 K).  

 
Figure 7 Digital Twin Load Cell for Creep Strain 

Through trial and error, it was revealed that at a maximum 
load of 0.5 MN, the strain gauge would undergo plastic 
deformation if the force is applied to the load cell for more than 
1,400 hours since the strain at this time is already 2.76 x 10-02. If 
the strain gauge reaches this state, the whole load cell has a high 
risk of becoming defective. Although the usual duration of use 
of most load cells is not more than two hours, there are 
applications where load cells are under constant loads for days, 
such as a calibration system for Coriolis flow meters by 
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volumetric and gravimetric methods and inventory monitoring 
of storage silos [2], [21].  

The graph also indicates that time influences the creep strain 
more than the force applied to the load cell. Even at maximum 
capacity, the creep strain is still lower after one hour compared 
to an applied force of only 0.01 MN after ten hours. This may 
look contradictory, but it should be noted that the creep strain 
at the strain gauge (carrier matrix) is determined by the 
equivalent stress, which is only 1.31 % of the stress acting on the 
load cell (Table 3). 
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3 Digital Twin Concept 
In the following section the frameworks for the development 

of the DT of force measurement device are discussed. As the 
starting point the requirements of digitization and Industry 4.0 
describe secure and unambiguous exchange of the metrological 
data. Based on these, the requirements for DT for metrological 
application are formed. The way of data communication and 
synchronization in metrological digital world is proposed. A key 
role in the data communication of a DMT plays a force DCC. 

3.1 Requirements of digitization and Industry 

4.0 

DT software must fulfil the requirements of digitization and 
Industry 4.0 in order to ensure the quality of exchanged data as 
well as its security. In the completed EMPIR project SmartCom 
“Communication and validation of metrological smart data in 
IoT-networks” [22] the main requirements were formulated as 
follows: 

1. Requirements on measurement data quality [23]: 
• Use of Universal Data Format.  
• For the digital exchange of metrological data, it is 

essential to associate at least one value to a 
corresponding Unit [SI Unit].  

• The complete indication of a measured quantity 
may contain additional information such as a 
specification of measurement uncertainty and a time 
stamp. 

2. Secure data exchange requirements [24]. 
• authenticity;  
• completeness of the transmitted data;  
• data integrity; 
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• manipulation protection as well as protection of 
confidentiality. 

Taking into consideration above mentioned requirements for 
data communication, the requirements on a DMT were 
formulated as following [25]: 

1. The measurement uncertainty is calculated according to 
recognized standards; 

2. All input parameters are traceably determined and stated 
with the corresponding measurement uncertainty; 

3. And it is validated by traceable measurements. 
 

3.2 Digital Metrological Twin 

Digital Metrological Twin (DMT) build based on the 
requirements stated in subsection above will provide the output 
which can be utilised in metrological services. DMT is the 
enhanced way to generate, process and store data on 
calibration device with the time stamp. Beyond the concept of a 
DCC [26], where calibration data is collected, DMT allows to 
correlate the force transducer output with the physical 
processes occurring in the transducer and allows its seamless 
connection with the factory of the future. All relevant data in 
such database is traceable and represented with SI units, if 
applicable. This data can be used by the end user in the further 
life-cycle of the calibrated device. Furthermore, the use of DMT 
will allow calibration system to learn from itself and improve the 
measurements uncertainty for future calibration processes with 
the same device as well as deliver data to derive correlations 
between calibration conditions, mounting, etc. as well as output 
values for devices of the similar class.  

The force measurement device DMT is based on the concept 
of Grieves [27] and Vickers [28] and covers three main functions, 
see Figure 8. The first function allows for a prompt reading of 
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selected device information, e. g. sensors reading (temperature, 
strain sensors). Here the key role plays the speed of 
communication as well as preservation of data quality. The 
physical-to-virtual communication is realised by reading of 
relevant device information from a DCC for force measurement. 
The second function of DT is the data processing by means of 
one of three models, mentioned above. The main outcome of 
data processing is the prediction of force measurements device 
output as well as measurement uncertainty. 

 
Figure 8 Concept of DMT of force measurement device 

For the DMT it is crucial that the input / output parameters 
are traceable and are stated with the corresponding 
measurement uncertainty. Additionally, the validation of the 
static, continuous and dynamic models within DT must be 
performed using traceable measurements. The third function 
enables saving of the modelled output which can be used to 
recalculated uncertainty in future calibration procedures.  

As the first prototype of the DMT of force measurement 
device, the FEM model of the transducer is developed. The 
models of static, continuous and dynamic calibration processes 
are developed in FE simulation software, see sections 4, 5 and 6 
respectively. The synchronization between the force 
measurement device and its DT is performed after each 
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calibration process in form of reading and subsequent update of 
the DCC by means of Python programming. The calculated with 
DT device output as well as measurement uncertainty are saved 
after each calibration in a database. The corresponding 
database of DT represents the device history, allowing the DT to 
recall any state of the device history. 

3.3 Data Communication 

Data Input 
The physical-to-virtual communication is realised by reading 

of relevant device information from a DCC in XML format. The 
benefit of direct use of data from DCC is that the results data is 
provided in SI format. The data transfer from DCC ensures that 
the input parameters of DT are traceable and stated with the 
given measurement uncertainty, as required by the definition of 
DMT. The DCC for static force calibration was developed by PTB 
according to the XML scheme (XSD) 3.1.2 [29]  

To read input parameters from DCC in XML format the 
ElementTree XML API of Python was used. It allows to read the 
specified elements of DCC XML tree, see Figure 9. 

 
Figure 9 XML structure of force DCC and highlighted list element containing 

values of applied force magnitude 
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ET.parse command was used to navigate to DCC document. 
The .getroot() command gets the parent tag of the XML 
document. The children nodes can be specified by the index, as 
it is shown in the example below: 

 
root[1][0][3][3][1][0][0][1][0].text 

 
Identifier .text allows to access the text of the specified child 

element. The force magnitude from DCC is then written to .txt 
file for further transfer to ANSYS FE-model as a boundary 
condition. Further input parameters such as temperature, 
frequency, mass, etc. can be extracted in a similar manner. 
Python code is used to automatically built the entire FE-model, 
select data for output and run the simulation [30].  

Data output and storage 
The calculated with the DT force transducer data is used to 

calculate measurement uncertainty considering effects from 
mechanical system, surrounding the force measurement device. 
In future developments, the collection of the selected 
information to a database will be realised. Each dataset will be 
completed with the metadata stating the calibration time. In 
this way the continuous calibration history of the force 
measurement device will be created. 

3.4 Machine Learning Models 

Machine learning models provide solutions to problems 
with high number of depending parameters. However, 
depending on the architecture of the Neural Network 
implemented (as Deep Neural Networks) a huge number of 
training data is required. As the number of training data 
increase the training time increase, but results provide from 
the model improves. 
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Another parameter to optimize is the number of epochs 
(number of times that the neural network is going to do the 
training). It is necessary to stablish which is a high and low 
number of epochs for each model, as a high number of 
epochs for a model can result in over training (the model is 
only trained for the training data and it cannot predict 
another values). Also not enough training ends in a similar 
situation. It is necessary to highlight a linear increase in 
training time with the number of epochs, as it is shown in the 
Figure 10. 

 
Figure 10: Evolution of training time with the number of epochs for a LSTM-

layer-based model with 100 input data trained with a workstation with a CPU 
Intel Xeon 6230R, GPU NVIDIA Quadro RTX 8000 and 128 Gb of RAM. 

If a high number of training examples is not possible new 
architectures of Neural Networks and new training 
techniques can be implemented to solve this problem. 
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4 Static calibration test model 
In the following section the FEA model of static calibration 

test of a 20 kN load cell is presented. The model was developed 
with the focus on further application in DT construct. At the first 
approach an analytical solution for the simplified case of a 
cylindrical shape transducer was derived. The analytical solution 
was then compared with the FEM analysis, performed with the 
ANSYS software. In the second step, the real geometry 
transducer model was numerically studies in ABAQUS software. 
To validate the model the results obtained from ABAQUS [31] 
FEA static implicit solver and an analytical solution were 
compared with the calibration data of the sensor in accordance 
with the ISO 376:2011-09 [32]. 

 

4.1 Analytical stress-strain analysis of the 

cylindrical force transducer 

The unconfined tension of the 20 kN column-type force 
transducer (CFT) is also studied from the analytical point of 
view, assuming the principle of superposition and using the 
relationships underlying linear elasticity and small 
deformations. The transducer is composed of a cylindrical 
elastic element, where d and h represent the diameter and the 
height, respectively of 12 mm and 30 mm, with 4 strain gauges 
located around the transducer at a height of h/6 for the 
evaluation of the vertical force, as shown in Figure 11. 
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Figure 11 Strain gauge location and bridge wiring of the CFT 

Considering a set of forces and bending moments (vertical and 
side forces/moments) applied to the upper face of the 
transducer. According to the chosen reference system in Figure 
12, Fz in compression is negative, while Fz in tension is positive.  
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Figure 12 Reference system and strain gauges locations 

Strain gauges, sensitive to vertical stress 𝜎𝑧, are strain gauges 
1, 2, 3 and 4 (nominally equal), located at an angle of 45°, 135°, 
225° and 315°, with respect to the x-axis.  

In general terms, the vertical stress 𝜎𝑧𝑖
 along z-axis, caused by 

the vertical force in tension and by possible spurious 
components (side forces and moments), at ith strain gauge 
position on the transducers, is given by: 
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(4.1) 
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where I is the area moment of inertia of a cylinder and 𝜃 is the 
position angle of each strain gauge. 

For strain gauges 1, 2, 3 and 4, the vertical stress 𝜎𝑧𝑖
 in tension 

is therefore given by: 
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(4.5) 

In general terms, the strain can be obtained according to: 
 

 𝜀𝑧𝑖
=

𝜎𝑧𝑖

𝐸
+

𝐹𝑥 (
ℎ
6)

2

2𝐸𝐼

𝑑
2
ℎ
6

cos 𝜃 +
𝐹𝑦 (

ℎ
6)

2

2𝐸𝐼

𝑑
2
ℎ
6

sin 𝜃 = (4.6) 



35 

 

DOI 10.5281/zenodo.7404128 
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where E is the Young’s modulus of the steel elastic element 

(210 GPa). At each strain gauge position, strain is therefore 
given by: 
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(4.10) 

 
In this way, it is possible to relate the (mV/V) bridge output 

with the geometrical parameters of the elastic element 
(E=210 GPa and ν=0.3) and the generated force by knowing the 
bridge wiring and the gauge factor (k=2) of the strain gauges, 
according to: 

 

 
(
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(4.11) 

 
By way of example, considering (4.11) different boundary 

conditions (or tests) in terms of generated vertical forces and 
spurious side forces and bending moments and applying the 
above-mentioned equations, it is possible to get the stress-
strain values at each strain gauge position and the bridge 
output, as shown in Table 5. The same mechanical conditions 
are applied to a simulation software (ANSYS-Fluent), which 
considers the transducer as a simple cylinder, in order to 
compare strains and bridge output results at each strain gauge 
location. As an example, the simulated deformations (to be 
divided by the length to get the strain) at strain gauge locations 
of test 3 (Fx=2000 N, Fy=-1000 N, Fz=10000 N, Mx=0 Nm, 
My=0 Nm), are shown in Figure 13. 
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Table 5 Comparison between calculated and simulated strains at 
strain gauge locations for the different tests 

 

 
Figure 13 Simulated deformations (in m) at four strain gauge 

locations for test 3 

Comparison between calculation and simulations, depicted in 
Figure 14-Figure 16, at each strain gauge position, shows a good 
agreement, with relative differences in the order of 5 %.  
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Figure 14 Comparison between analytically calculated and simulated 

strains for tests 1 and 2 

 
Figure 15 Comparison between calculated and simulated strains for 

tests 3 and 4 

 
Figure 16 Comparison between calculated and simulated strains for 

test 5 

8.1E-05

8.2E-05

8.3E-05

8.4E-05

8.5E-05

8.6E-05

8.7E-05

8.8E-05

8.9E-05

9.0E-05

1 2 3 4

St
ra

in
, [

-]

Strain gauge number

Test 1

Calculations

Simulations
8.1E-04

8.2E-04

8.3E-04

8.4E-04

8.5E-04

8.6E-04

8.7E-04

8.8E-04

8.9E-04

9.0E-04

1 2 3 4

St
ra

in
, [

-]

Strain gauge number

Test 2

Calculations

Simulations

-6.0E-04

-4.0E-04

-2.0E-04

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1 2 3 4

St
ra

in
, [

-]

Strain gauge number

Test 3

Calculations

Simulations

-2.0E-02

-1.5E-02

-1.0E-02

-5.0E-03

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

1 2 3 4St
ra

in
, [

-]

Strain Gauge number

Test 4

Calculations

Simulations

-2.0E-02

-1.0E-02

0.0E+00

1.0E-02

2.0E-02

3.0E-02

1 2 3 4

St
ra

in
, [

-]

Strain gauge number

Test 5

Calculations

Simulations



39 

 

DOI 10.5281/zenodo.7404128 

4.2 Real force transducer model set up 

The detailed design of the load cell geometry is described 
elsewhere [33]. Figure 17 presents a schematic drawing of the 
load cell with ringlike masses, relative position of the strain 
gauges (force and bending) and temperature sensor, as well as 
typical boundary condition used in ABAQUS. 

 

Figure 17 Left - Load Cell schematic and the nominal position of the strain 
gauges [31]. Right – ABAQUS boundary conditions example 

Four strain gauges measuring the longitudinal (L) and 
transversal (T) strains were connected in a Wheatstone bridge 
configuration as shown in Figure 18. The four strain gauges were 
mounted at 90 ° to each other on the body of the dynamometer. 
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Figure 18 Wheatstone bridge configuration of the strain gauges used for the 

force measuring setup: S -source, M – measurement 

The longitudinal and transversal strain measurements 
correspond to axial εY and radial strain εR, respectively. As such, 
the millivolt per volt output of the bridge (I) can be expressed 
using equation (4.12): 

𝐼 = 1000 × 

(
𝑅1L + 𝑅3L

𝑅1L + 𝑅3L + 𝑅1T + 𝑅3T

−
𝑅2𝑇 + 𝑅4𝑇

𝑅2L + 𝑅2L + 𝑅4T + 𝑅4T
) 

(4.12) 

On the basis that the resistance (R) of the strain gauge is equal 
to: 

𝑅 = 𝑅0(1 + 𝑘𝜀) (4.13) 

where R0 is the nominal value of the sensor resistance and k 
is the gauge factor. 

The equivalent analytical solution to the equation (4.12) is 
given by: 

𝐼 = 1000 ×
𝑘𝜀(1 + 𝜐)

2 + 𝑘𝜀(1 − 𝜐)
 (4.14) 

where 𝜐 is the Poisson’s ratio and ε is the analytical axial 
(longitudinal) strain, which can be calculated as: 
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𝜀 =
4𝐹

𝐸𝑑2
 (4.15) 

where F is the applied force, E is the Young’s modulus and d 
is the diameter of the dynamometer. 

4.2.1 Dynamometer meshing and data processing 

Figure 19 shows the meshing conditions of the dynamometer 
in ABAQUS. The FEM simulations were run with a 2.5 mm 
distance between nodes (white circles in Figure 19 left). A 10-
node modified quadratic tetrahedron (C3D10M) element was 
used in this study and implicit analysis was chosen. The 2.5 mm 
distance between the nodes was selected to provide optimal 
execution time on a desktop computer. An additional simulation 
was performed by considering the distance between the nodes 
as 1 mm. The dynamometer had the properties of a steel alloy: 
Young’s modulus 200 GPa and Poisson’s ratio 0.3. 

To help with the ease of data collection and postprocessing, 
the surface of the central part dynamometer on which the strain 
gauges were mounted  was seeded in such way that includes 30 
elements (here defined as the space between two seeds) in the 
axial direction and 36 circumferentially (in Figure 19 the surface 
edge seeds are represented by the purple triangles). This 
configuration of surface seeds allows to collect the spatial 
displacements (U1, U2, U3) at the surface nodes in all three 
orthogonal directions (X, Y, Z) and their associated positions (in 
mm), at every 1 mm (nominally) along the axis of the 
dynamometer and 10 ° radially (or every 1 mm nominally) along 
the circumference, hence a set of 36 × 31 (1116) surface nodes. 

Figure 19 right presents the ABAQUS meshing result of the 
dynamometer. Worth mentioning that that the size of the strain 
gauges is larger than the distance between surface nodes (a 
ratio approximately of 2:1), however, denser sampling can be 
used to characterise in more detail the dynamometer response.  
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Figure 19: Example of seeding (left) and meshing (right) of the 

dynamometer 

The data was collected along a path that included the surface 
nodes starting with the top radial data and gradually going down 
along axial direction of the dynamometer and stored in an excel 
file (.xls), which was imported in MATLAB (version R2021b 
Update3) for further processing and analysis. The FEM spatial 
displacement results stored in the excel files comprised of 
6 × (n +1) columns and 1116 rows, n representing the number 
of loading increments and “+1” to allow storing the data 
representing the un-loaded state of the dynamometer (0 N). 

A diagrammatic indication of the surface nodes of the 
dynamometer is presented in Figure 20. 
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Figure 20: Diagrammatic indication of the surface nodes position 

on the body of the dynamometer 

The longitudinal strain (εL,(i,j)) – i.e. in the axial direction – of a 
surface between four adjacent surface nodes was calculated 
using equation (4.16). 

εL,(i,j) =
U2,(i,j+1) − U2,(i,j)

∆𝑌
  (4.16) 

where ΔY is nominal axial distance between these two axial 
nodes, and indices i and j range from 1 to the number of nodes 
sampled on the circumference (36) and axial number of nodes 
less 1 (30), respectively. 

At each surface node, the radial strain was calculated as the 
ratio between the square root of the quadratic sum of the 
node’s displacements along the X and Z direction, U1 and U3 
respectively, and the diameter of the dynamometer, as shown 
in equation (4.17). 

εR,(i,j) =
2 × √U1,(i,j)

2 + U3,(i,j)
2

𝑑
  (4.17) 

where i and j range from 1 to the number of nodes sampled 
on the circumference (36) and axially (31), respectively. 

The transversal strain (εT,(i,j)) was calculated using equation 
(4.18). 
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εT (i,j) =
εR,(i,j+1) + εR,(i,j)

2
  (4.18) 

Where indices i and j range from 1 to 36 and to 30, 
respectively.  

In the following step, equation (4.12) was used to derive the 
equivalent mV/V bridge output using the FEM (IFEM) longitudinal 
and transversal strain results.  
𝐼FEM = 1000 × 

[
2 + 𝑘(εL,(i,j) + εL,(i,j+18))

4 + 𝑘(εL,(i,j) + εL,(i,j+18) + εT,(i,j) + εT,(i,j+18))

−
2 + 𝑘(εT,(i,j+9) + εT,(i,j+25))

4 + 𝑘(εL,(i,j+9) + εL,(i,j+25) + εT,(i,j+9) + εT,(i,j+25))
] 

(4.19) 

4.2.2 Strain gauge meshing and data processing 

The force strain gauges were implemented in ABAQUS as a 
sandwich of three thin foils (glue, backing and foil) of 6 mm by 
6 mm, positioned on the body of the dynamometer using a type 
“tie” constraint, with the following properties: Young’s modulus 
of 3.45 GPa, 2.96 GPa and 159 GPa, respectively; Poisson’s ratio 
of 0.3 for glue and backing, and 0.3 for the foil. 

The FEM simulations were run with a 0.5 mm distance 
between nodes (resulting in 650 nodes on each surface of the 
foil 26 by 25 grid). A 10-node quadratic tetrahedron element 
(C3D10) was used in this study and implicit analysis was chosen. 

The spatial displacements (U1, U2, U3) at the surface nodes of 
the foils and their associated positions (in mm), were collected 
in a similar method to the one presented in the previous section. 

However, the equivalent sensors output was calculated using 
the following equation. 
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𝐼FEM−SENS = 1000 × 
 

[
2 + 𝑘(εL1,(i,j) + εL3,(i,j))

4 + 𝑘(εL1,(i,j) + εL3,(i,j) + εT1,(i,j) + εT3,(i,j))

−
2 + 𝑘(εT2,(i,j) + εT4,(i,j))

4 + 𝑘(εL2,(i,j) + εL4,(i,j) + εT2,(i,j) + εT4,(i,j))
] 

(4.20) 

Where the numbers after L and T indices indicate the sensor 
number. 

4.3 Results of FEA of real force transducer 

4.3.1 Dynamometer with no sensors 

Here, the FEM compression results at 20 kN for 1 mm and 
2.5 mm distance between the dynamometer nodes and two 
loading conditions, concentrated force - Figure 21 a), and 
pressure - Figure 21 b), is reported.  

 
Figure 21: Loading conditions: a) Concentrated force case study; b) 

Pressure case study 

Figure 22 a) shows a cylindrical plot of all the errors in mV/V 
between the FEM results at 2.5 mm (×) and 1 mm (o) meshing 
distance for concentrated force case study and analytical 
solution. The magnitude of these errors decreases from 

a) b)
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approximately 32 µV/V for both meshing distances at the far 
ends of the sampled area on the dynamometer to below 
0.05 µV/V and 0.03 µV/V around the middle of the 
dynamometer for 2.5 mm and 1 mm meshing distance, 
respectively. 

The standard deviation calculated at each axial position 
decreases from 1.5 µV/V to 1.7 nV/V. As shown in Figure 22 b), 
the mean errors at each axial position between the FEM results 
and analytical solution are larger than their associated standard 
deviations. However, the difference between the average mV/V 
results for 2.5 mm and 1 mm node distance was larger than 
their combined standard deviation only in the middle 12 mm of 
the dynamometer, see Figure 23. 

Whilst there are no significant differences between the 
pressure case study and the concentrated force, the smallest 
absolute difference between FEM and analytical solution drops 
to 0.7 nV/V. The pressure case study provides smaller absolute 
errors in the central 6 mm of the dynamometer as shown in 
Figure 24. 

 
Figure 22 Error maps between FEM compression results at 20 kN, 2.5 mm 

(×) and 1 mm (o), and the analytical solution in the concentrated force case 
study: a) all data; b) means and standard deviations (error bars) at each axial 
position. Axial positions are relative to the middle of the dynamometer 

a) b)
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Figure 23 Concentrated force case study at 20 kN – EN is ratio between the 

standard deviation and the absolute mean error: (×) 2.5 mm nodes distance 
FEM result relative to the analytical solution, (o) 1 mm and the analytical 
solution and (+) errors between the two nodes distance FEM results. Axial 
positions are relative to the middle of the dynamometer 

Despite such small differences between the two test cases 
and analytical solution, there is a significant difference between 
the two of them, as shown in Figure 25. The difference in mV/V 
is almost constant in the bottom 20 mm. 

 
Figure 24 Means and standard deviations (× 10), at the central axial position 

on the dynamometer, of the errors between the pressure case and the 
analytical result (o), and the concentrated force and the analytical result (×). 
All data reported for compression at 20 kN 
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Figure 25 Difference between FEM results for concentrated force and 

pressure case study at 20 kN and 2.5 mm node distance 

As the FEM mV/V response is derived the longitudinal and 
radial strain, further plots including the relative mean errors 
between the FEM and analytical results along the axis of the 
dynamometer and of the relative errors in the middle of the 
dynamometer are presented in Figure 26a) and b), respectively. 

The FEM dynamometer force response is reported for 2.5 mm 
distance between the nodes and for a range of compression 
forces ranging from (0 to 20) kN in 10 % increments, and 
compared with the real sensor calibration results, which was 
performed at PTB according to ISO 376:2011-09. Figure 27a) 
presents the relative mean errors between the FEM results and 
analytical results, as well as the relative difference between the 
mean calibration results of the sensor and the analytical 
solution. Figure 27 b) presents only the non-linearity errors of 
the FEM and calibration results. 
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Figure 26 a) Relative mean errors between FEM and analytical results along 

the axis of the dynamometer; b) Relative errors between FEM and analytical 
in the middle of the dynamometer (secondary axis in % for radial strain only). 
Legend: (×) axial strain, (+) radial strain, (o) mV/V indication, black - 
concentrated force, and red - pressure case study. All data reported for 
compression at 20 kN and 2.5 mm node distance 

Unlike the sensor calibration results, the FEM relative 
differences from analytical solution do not vary as function of 
applied force and are just below 0.2 %. Apart from a second 
order force error (non-linearity), the calibration results are 
approximately 5.8 % different.  

4.3.2 Dynamometer with sensors 

Figure 28 presents the difference between the dynamometer 
FEM results in mV/V with the strain gauges and without 
(pressure loading conditions, 20 kN and 2.5 mm node distance). 

The errors vary from a couple of parts per million at the top 
end of the dynamometer (15 mm axial position in Figure 28) to 
about 0.4 % around position on the strain gauges. However, the 
sensor output was found to be noisy and with large errors 
around the edges of the sensors. 

For comparison, the relative errors of the mV/V output of the 
dynamometer at 6.5 mm below its centre and the average 
sensors output calculated from all the results obtained between 
0.5 mm above and below that position are shown in Figure 29. 

a) b)
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Figure 27 a) Mean relative difference from analytical results 7 mm; b) mean 

non-linearity errors. Legend: (×) FEM pressure case, (+) FEM concentrated 
force, continuous line – mean calibration results 

  

Figure 28 Relative difference between the mV/V output of the dynamometer 
with and without strain gauges 

The difference between sensors output and analytical results 
was approximately 0.5 % with an associated standard deviation 
of the mean of 0.12 %. 

 

4.4 Discussions and conclusions 

To put the results in the context, the relative uncertainty 
component associated with the force traceability was 20 ppm, 
which corresponds to 24 nV/V at 20 kN. 

a) b)
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Figure 29 Relative difference between the mV/V output of the dynamometer 

with (+) and without strain gauges (o), average sensor output (◊) and the 
analytical solution 

From the outset of subsection 4.3.1, the FEM results 
demonstrated their advantage over the analytical formulation 
to represent closely the dynamometer response, especially 
when the shape of the elastic element is not a perfect cylinder. 
The differences between the FEM and analytical solution, 
depicted in Figure 22 are always larger than the standard 
deviation associated with the FEM results, the standard 
deviation in this case being a measure of the effect of the spatial 
reproducibility FEM results. However, FEM requires very careful 
implementation which is especially important in the DT of 
measurement uncertainty context, from meshing to sampling 
and from choosing the correct constitutive models to extract/ 
visualise the results. For example, in this study only two node 
distances were studied, 2.5 mm and 1 mm, simulations form 
smaller meshing distances being nearly impossible to run in an 
average computer. The difference between the results obtained 
for these two meshing conditions being comparable with the 
top end traceability contribution (see Figure 23 and Figure 24). 
Much larger differences in results were recorded for different 
loading conditions, with magnitudes in the order of tens of a 
percentage at the lower end of the dynamometer to one 
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percent of the reproduced values at the top end, as shown in 
Figure 25, highlighting potential effects of the loading set up. 

However, the mV/V equivalent results present less errors 
compared to the individual strain values from which they are 
derived, as shown in Figure 26, highlighting the potential 
numerical errors arising from the approximations performed in 
FEM, and in this case their effect on the radial position of the 
surface nodes. The way in which the sensors are connected in 
practice to measure the force without the bending effect seems 
to remove the effect of the FEM numerical errors. 

Nevertheless, the sensor calibration results did not match the 
expected non-linear behaviour of the mV/V output (see Figure 
27). This discrepancy is likely to originate from the strain gauges 
output, which has been addressed in subsection 4.3.2. The FEM 
results are affected by the presence of the strain gauges as 
shown in Figure 28 and Figure 29, which may change 
significantly with the type of constraint, subject of future work. 
However, the FEM non-linear errors do not change in the 
presence of the gauges attached to the dynamometer, meaning 
that the present configuration of the FEM is not able to predict 
current behaviour of the sensor. 

Here we have investigated the FEM potential to become an 
integral part of a metrological DT [25] of a force device and, 
besides the discrepancies between the experimental and 
analytical results which require further investigations, we have 
shown that the Nevertheless, the next steps are focused on the 
conceptualisation of the DT [34], i.e. integrating the FEM model 
into a metrology decision making process. 
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5 Continuous calibration test model 

In the following section the FEA model of continuous 
calibration test of a 20 kN load cell is presented. The description 
of the continuous calibration test procedure is followed by the 
ANSYS model implementation. The FEA is then compared with 
the measured data of the force transducer during creep test.  

5.1 Continuous calibration test procedure 

In continuous calibration, a force measurement device is 
calibrated in a machine that can control the force loading and 
unloading operation as a function of time. A specific example is 
the creep test performed at the end of the static procedure in 
which the transducer is loaded at full scale and held for five 
minutes. Values are taken at thirty seconds and five minutes 
after loading the transducer. The creep is measured without the 
load, but only after 5 min after the load is removed [8]. 
Corresponding loading profile of a creep test with the nominal 
force of 20 kN is presented in Figure 30. 

 
Figure 30 Force vs time profile for continuous tests 

The measured output signal of the force transducer tested 
following the creep procedure is presented in Figure 31. The test 
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was performed on tension with the filter settings of 1.7 Hz 
Bessel and samplerate of 5-10 Hz.  

 
Figure 31 Measured output signal of the force transducer after creep test at 

20 kN nominal force: a) during holding stage after full loading; b) during 
holding stage after full unloading 

The strain gauge output signal increased after the maximum 
load was applied, until reaching a steady value. After removing 
the load, the output signal of the strain gauge drops as well, but 
due to creep one can see the residual output signal value, which 
then creeps to the zero value after some time. The stain gauge 
phenomenon is described in details in [35]. 

5.2 Continuous calibration test model 

The geometrical model of the transducer presented in Figure 
32 is used to build a FE-model of a dynamic calibration test. The 
improved load cell setup without masses is used [33]. An 
element size of 6e-4 m was used to mesh the entire model. The 
measurement region of the load cell was meshed with the 
structured hexahedral elements. Free triangular mesh was used 
on the rest of the load cell to decrease computational costs.  
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Figure 32 Geometrical model of the force transducer and strain gauges 
with the applied boundary conditions and load 

The coupled field transient analysis of ANSYS software was 
used model structural as well as thermal strains during 
continuous calibration process. Thermal as well as structural 
physical properties were prescribed to the load cell.  

Time step size showed to have a great effect on the solution 
convergence and calculated temperature. Time integration was 
set in the following manner ensured stable convergence of the 
analysis:  

• initial time step was set to be 100 times smaller than 
the length of the loading step; 

• minimum time step was set to be 1000 smaller than 
the loading step; 

• maximum time step was set to be 10 times smaller 
than the loading step.  

In addition to the elastic material properties required for 
static structural analysis, the thermal properties for load cell 
material were defined according to [36]. 

The creep force load was applied in Y axial direction. Force 
profiles, representing the last creep loading step, see Figure 30, 
were used to decrease computational time. The ambient 

Fixation
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temperature was set to 22 °C. Convection condition was defined 
with the heat transfer coefficient set to 25 [W/m2∙°C] equal to 
all surfaces of the load cell. 

5.3 Simulation results of creep test 

In order to compare the simulations with the experimental 
results, the thermal and elastic strains were calculated in the 
middle region of the load cell, where the strain gauges are 
placed. The simulated thermal strains, Figure 33, as well as 
elastic strains, Figure 34, are presented below. 

 
Figure 33 Simulated thermal strains in the strain gauge placement region of 

the load cell during creep cycle 

 
Figure 34 Simulated elastic strains in the strain gauge placement region of 

the load cell during creep cycle 

Total strains are calculated as the sum of elastic and thermal 
strains. Similar to static calibration test model, the FEA output 
signal lies close to the analytical value, which is twice higher that 
the experimental one. To enable better data comparison the 
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measured as well simulated output signals were normalised 
using the formula (5.1): 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

  

(4.17) 

The simulated output signal of the load cell is presented in 
Figure 35. The output signal was calculated using the approach 
discussed in section 4 in details.  

 
Figure 35 Comparison between the simulated and the measured data during 

loading (left hand side) and unloading (right hand side) stages 

The simulated and measured data show opposite trends. The 
measured data represents the strain gauge output signal and 
the simulated one the output of the load cell. This is in 
accordance with the findings of Kühnel, who stated that the 
creep recovery of the load cell acts in opposite direction to the 
creep of the strain gauge and the corresponding glue layer [37]. 
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6 Dynamic calibration test model 
To study the influence of the frequency on the output signal 

during dynamic calibration test a dynamic FE-model presented 
in section 5 was further developed to address the dynamic 
calibration conditions. 

6.1 FE-model set up 

The FE-model of a dynamic calibration test was built as 
described is subsection 5.2. Axial load was applied in a cyclic way 
with two loading rates of 0.1 and 1 seconds as it is shown in 
Figure 36. Three loading cycles were simulated in order to 
maintain a reasonable simulation time. 

 
Figure 36 Simulated dynamic calibration profile with the loading rate of a) 

1 second and b) 0.1 second 

6.2 Simulation results 

The FEA temperature profiles corresponding to two loading 
cycles with different loading rates are presented in Figure 37. 
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Figure 37 Simulated temperature profile during dynamic calibration 

process: a) full range view; b) high temperature resolution view, showing 
detailed temperature change at maximum temperatures 

The profiles for both loading rates show a slight decrease of 
the temperature peaks for the second and third cycles. The 
fluctuation of the temperature due to thermoelastic effect 
during cyclic loading is of about 0.15 °C. The simulation 
temperature fluctuation shows good agreement with the cyclic 
test on AISI 1045 mild steel cylindrical specimens, reported in 
[38], where temperature fluctuation of a specimen of 0.12 °C 
was observed.  

Due to extremely high computational costs of the dynamic 
calibration test model, FEA is not suitable to fully analyse the 
dependency of the dynamic sensitivity of the force transducer 
on mass and frequency, described in [8]. Thus, for a proper 
application in DMT, an investigation into the use of Machine 
Learning could be beneficial. 
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7 Conclusions 
The work described in this report has covered the 

development of digital constructs necessary for the digital 
metrological twin of a force transfer standard in relation to its 
static, continuous and dynamic on based on FEA and analytical 
modelling. 

The DT concept for a force transfer standard has been 
advanced in sections 2 and 3 of this report and covered two 
complementary DT perspectives: one that looks at assuring safe 
metrological use of the force device experiencing over loading 
and one that describes the metrological assurance in relation to 
the results reporting.  

The FEA model for static measurement of a force transfer 
standard was presented in section 4, together with an analytical 
formulation, which allowed to validate the use of the static 
model in the evaluation of the effect of non-compliant loading 
and unloading such as bending moments, tilt and side forces to 
the measurement uncertainty. The experimental validation was 
deemed not sufficiently accurate to validate the proposed 
model, especially due to the relaxation of the supporting matrix, 
previously reported in the literature as the main source of creep.  

Section 5 addresses the thermal of creep previously recorded 
in literature as the thermo-mechanical effect. The findings are 
in agreement with the current knowledge about the creep 
behaviour experienced in force transducers. The creep 
evaluated in [8] was governed by the strain gauge relaxation 
behaviour mentioned above. Nevertheless, the model is able to 
estimate the temperature fluctuation and its effect on the strain 
measurements, which can be used to decouple the strain 
gauges relaxation effect from the thermomechanical beam 
behaviour. 
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Section 6 presents the FEM model that is used to evaluate the 
sensor behaviour under cyclic loading, but it was discovered 
that effectiveness of the simulations was hindered by the 
computational limitations required by FEA. A responsive 
solution will rely on a surrogate model that is validated by an 
FEA and a different experimental setup.  

A difficulty that was not overcome in this work was accurate 
modelling of the strain gauge behaviour. The main efforts were 
concentrated at developing a comprehensive computational 
model of the entire device. The drawback of the model was 
rooted in the relative mismatch between the element size 
required to simulate the beam response and the strain sensor 
response. Future work could look into different modelling 
strategies which can assess the strain gauge real behaviour. 
Nevertheless, the methods of determining experimentally the 
creep behaviour of the strain gouges can be used to determine 
a comprehensive force sensor measurement model. Given the 
variability in the sensors output, AI technologies could be used 
along the current and past experimental studies to predict the 
strain gauges creep behaviour in the future. 

Here a GUM S1 Monte Carlo approach can use the models 
developed in this work, which estimate the influence of the 
sensor position on the body of the dynamometer, bending 
moments, tilt and side forces to the transfer standard 
measurement output, to establish summary uncertainty 
information, means and standard deviations, associated with 
these influence parameters and propagate them with an 
updated measurement model. In this way, the transfer standard 
calibration will be less reliant on a black-box approach and will 
be able to use AI techniques in the future, which will enable the 
prediction of the strain gauges output, ultimately improving the 
force standards’ accuracy. 
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