Publications

  1. Brand, U. et al., Long Slender Piezo-Resistive Silicon Microprobes for Fast Measurements of Roughness and Mechanical Properties inside Micro-Holes with Diameters below 100 µm, Sensors 2019, 19(6); https://doi.org/10.3390/s19061410
  2. Fahrbach, M. et al., Optimizing a cantilever measurement system towards high speed, nonreactive contact-resonance-profilometry, Eurosensors 2018 Proceedings, 2, 889, https://www.mdpi.com/2504-3900/2/13/889
  3. Fahrbach, M. et al., Entwicklung eines taktilen Mikrotaster-Messsystems für Hochgeschwindigkeitsmessung von Form, Rauheit und mechanischen Eigenschaften, 20. GMA/ITG-Fachtagung Sensoren und Messsysteme, 2019 Tagungsband, https://doi.org/10.5162/sensoren2019/P2.10
  4. Fahrbach, M. et al., Calibrating a high-speed contact-resonance profilometer, Journal of  Sensors and  Sensor Sysems, 9, 179–187, 2020, https://doi.org/10.5194/jsss-9-179-2020
  5. Fahrbach, M. et al., Higher-Mode Contact Resonance Operation of a High-Aspect- Ratio Piezoresistive Cantilever Microprobe, SMSI 2020 - Sensors and Instrumentation, A6 MEMS Sensors, 89-90, https://www.ama-science.org/proceedings/details/3656
  6. Reuter, Ch. et al., Applications of Tactile Microprobes for Surface Metrology, SMSI 2020 - Sensors and Instrumentation, A6 MEMS Sensors, 89-90, https://www.ama-science.org/proceedings/details/3655
  7. Behle, H. et al., Mode analysis for long, undamped cantilevers with added diamond tips of varying length for fast roughness measurements, SMSI 2020 - Sensors and Instrumentation, A6 MEMS Sensors, 89-90, https://www.ama-science.org/proceedings/details/3729
  8. Friedrich, S. et al., Application of contact-resonance AFM methods to polymer samples, Beilstein J. Nanotechnol. 11, 1714-1727, 2020, https://doi.org/10.3762/bjnano.11.154
  9. Teir, L., Microprobe surface roughness characterization, Master thesis, http://urn.fi/URN:NBN:fi:aalto-2020122056319
  10. Fahrbach, M., et al., Customized piezoresistive microprobes for combined imaging of topography and mechanical properties, Measurement: Sensors, Volume 15, 2021, 100042, https://doi.org/10.1016/j.measen.2021.100042
  11. Xu, M., Investigating the traceability of silicon microprobes in high-speed surface measurements, J. Sensors 2021, 21, 1557. https://doi.org/10.3390/s21051557
  12. Fahrbach, M., et al., Self-excited Contact Resonance Operation of a Tactile Piezoresistive Cantilever Microprobe with Diamond Tip, Proceedings SMSI 2021 – Sensors and Instrumentation, A5 MEMS Sensors, 73-74, 2021. https://doi.org/10.5162/SMSI2021/A5.4
  13. Teir, L., et al., In-Line Measurement of the Surface Texture of Rolls Using Long Slender Piezoresistive Microprobes, Sensors 2021, 21(17), 5955; https://doi.org/10.3390/s21175955
  14. Setiono, A., et al., In-Plane and Out-of-Plane MEMS Piezoresistive Cantilever Sensors for Nanoparticle Mass Detection, Sensors 2020, 20(3), 618; https://doi.org/10.3390/s20030618
  15. Setiono, A., et al., Performance of an Electrothermal MEMS Cantilever Resonator with Fano-Resonance Annoyance under Cigarette Smoke Exposure, Sensors 2021, 21(12), 4088; https://doi.org/10.3390/s21124088
  16. Lindstedt, T., Mechanical integration of microprobe as surface roughness on roll measuring device, Master thesis; http://urn.fi/URN:NBN:fi:aalto-202003222560
  17. Nyang’Au, et al., Measurement of Mass and Magnetic Moment of Magnetic Particles, Chemosensors 2021, 9(8), 207; http://urn.fi/URN:NBN:fi:aalto-202003222560