

**EURAMET** 

#### A simple design to study the accuracy of household meters

MetroWaMet final meeting and dissemination workshop Mika Huovinen

15<sup>th</sup> September 2021 VTT

2021 VTT – beyond the obvious



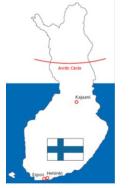




#### -Shortly VTT MIKES and project background

#### -Development of the calibration rig

#### -Measurement results of the household meter




VTT – beyond the obvious



#### **National Metrology Institute VTT MIKES**





- Part of VTT Technical Research Centre of Finland Ltd
- National Metrology Institute VTT MIKES has two departments located in Espoo and Kajaani



#### VTT MIKES Kajaani

- World's northernmost national standard laboratory
- National standard for force, torque, heavy mass and water flow



The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States



Metrology for Real-World



#### **MetroWaMet**

- The work is done under EMPIR project called "Metrology for real-world domestic water metering"
- Work Package 1, Infrastructure to assess domestic water meters under dynamic load changes
- The aim was to develop/modify an existing test rig to meat the needs to measure the water meters under dynamic load changes
- Comparison measurement between partners
- In Finland we used the scale of the gravimetric calibration rig as the base for the new dynamic rig









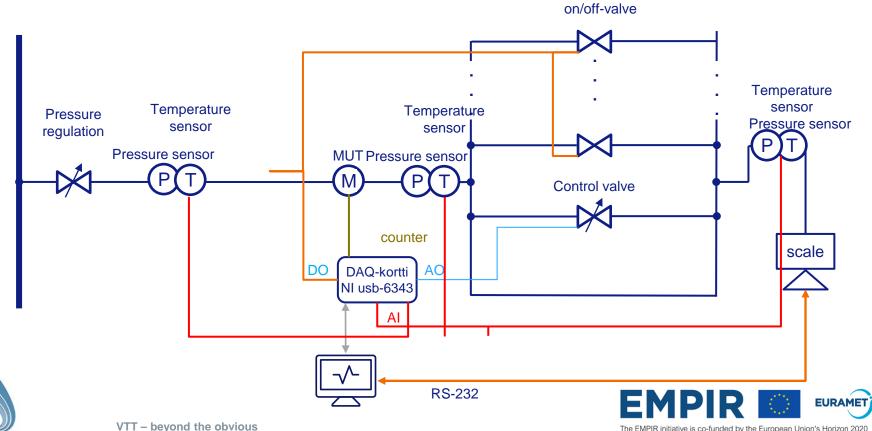
## Simple dynamic water meter calibration rig

VTT – beyond the obvious



### **Liquid flow**

- We use the flow from local water supply network
  - Pressure ca. 7 barg
     > Regulated to 4 barg
  - Pressure regulator at the inlet to balance the fluctuations
  - Temperature of the water is colder (ca. 7 8 °C) compared to normal 20 °C














The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States 7

Metrology for Real-World

Domestic Water Metering



## Flow rig

#### Inlet and pressure vessel





VTT – beyond the obvious

#### **Control valves**







#### User interface of the software

|                                   | Static Dynamic                                                          |                                                       |                     |
|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|---------------------|
| Serial port connection            | Dynamic flow profile                                                    |                                                       |                     |
|                                   | C:\Program Files (x86)\MetroWaMet\Flow profiles\Dynamic_flow_profile_N1 | 1_50L.txt                                             |                     |
| DAQmx device connection           | Polynomial coefficients dynamic measurement                             |                                                       |                     |
| CRIO connection                   | ÷)0 +4064,8029742133                                                    |                                                       | Dynamic measurement |
|                                   | Waiting time at the beginning (s)                                       | Digital valve 1<br>Digital valve 2<br>Digital valve 3 | Upper limit (V)     |
| tate out loop1                    | Filename                                                                | Digital valve 4                                       |                     |
|                                   |                                                                         |                                                       |                     |
| Idle                              |                                                                         |                                                       |                     |
| Idle State out loop2 Transmitting |                                                                         |                                                       |                     |



VTT – beyond the obvious

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

EURAMET

9

EM



### Simple design

- The rig imitates the operating system of normal house
  - There are needs for very specific rigs, but we tried to get this closer to normal use
  - Primary standard -> secondary standard -> ... -> bucket







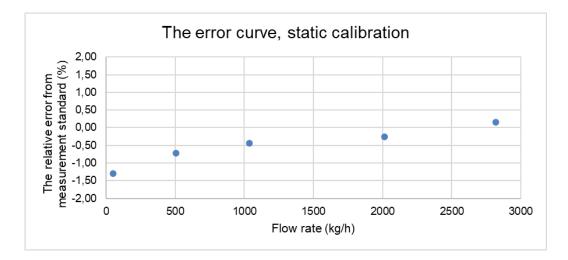


## Performance of household water meter

VTT – beyond the obvious



- Tested meter is ultrasonic design, size of the meter is DN20,  $Q_3=2,5$  m<sup>3</sup>/h and R250
- Meter has normal operation mode (resolution 1 L) and test mode (resolution 0.001 L)
- Normal end-user cannot use test operation mode
- Tests were done with VTT's test rig, where the scale is the reference, with dynamic and static profiles










Specification for the meter is class 2



- Static measurements
- Test mode
- Average results of 5 repeats, 300 s each

Meter is working fine in class 2, even close to class 1 ( $Q_2$ =16 m<sup>3</sup>/h)









Static measurements, test mode, average results of 5 repeats, 300 s each

| Nominal<br>flow rate | Mass flow<br>rate of the<br>reference | Time of meas. | Average<br>upstream<br>Pressure | Average<br>water<br>temp. | Average<br>reference<br>mass | Density of<br>water  | Indicated<br>mass by<br>MUT | Average<br>relative<br>error | Standard<br>deviation | Relative<br>expanded<br>uncertainty<br>( <i>k</i> =2) |
|----------------------|---------------------------------------|---------------|---------------------------------|---------------------------|------------------------------|----------------------|-----------------------------|------------------------------|-----------------------|-------------------------------------------------------|
| (kg/h)               | (kg/h)                                | (s)           | (bar)                           | (°C)                      | (kg)                         | (kg/m <sup>3</sup> ) | (kg)                        | (%)                          | (%)                   |                                                       |
| 50                   | 51,98                                 | 300,0         | 4,05                            | 10,20                     | 4,331                        | 999,685              | 4,275                       | -1,301                       | 0,34                  | 0,73                                                  |
| 500                  | 505,34                                | 300,0         | 3,93                            | 6,94                      | 42,112                       | 999,907              | 41,808                      | -0,720                       | 0,06                  | 0,31                                                  |
| 1000                 | 1035,49                               | 300,0         | 3,84                            | 6,96                      | 86,291                       | 999,906              | 85,910                      | -0,442                       | 0,07                  | 0,31                                                  |
| 2000                 | 2014,96                               | 300,0         | 3,56                            | 7,22                      | 167,913                      | 999,894              | 167,478                     | -0,259                       | 0,07                  | 0,31                                                  |
| 2800                 | 2819,78                               | 300,0         | 3,17                            | 6,87                      | 234,982                      | 999,910              | 235,366                     | 0,164                        | 0,03                  | 0,29                                                  |





The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

EURAMET

14



Dynamic measurements, test mode, average results of 5 repeats

| Profile N° | Time of<br>meas. | Average<br>upstream<br>Pressure | Average<br>water<br>temp. | Average<br>MUT Flow<br>Rate | Average<br>Reference<br>Flow Rate | Water<br>density | Average<br>Reference<br>Totalized<br>Mass | Average<br>relative<br>error | Standard<br>deviation | Relative<br>expanded<br>uncertainty<br>( <i>k</i> =2) |
|------------|------------------|---------------------------------|---------------------------|-----------------------------|-----------------------------------|------------------|-------------------------------------------|------------------------------|-----------------------|-------------------------------------------------------|
|            | (s)              | (bar)                           | (°C)                      | (kg/h)                      | (kg/h)                            | (kg/m³)          | (kg)                                      | (%)                          |                       | (%)                                                   |
| 1 - 50 L   | 443,0            | 3,99                            | 7,51                      | 445,429                     | 449,343                           | 999,874          | 55,294                                    | -0,87                        | 0,21                  | 0,50                                                  |
| 2 - 100 L  | 748,0            | 3,99                            | 8,04                      | 491,727                     | 495,641                           | 999,848          | 103,019                                   | -0,79                        | 0,11                  | 0,35                                                  |
| 3 - 80 L   | 560,0            | 4,01                            | 7,72                      | 555,959                     | 559,171                           | 999,868          | 86,908                                    | -0,57                        | 0,06                  | 0,30                                                  |









- Previous measurements were made with more specific test mode
- How about with normal mode









#### **Comparison of test mode and normal mode**

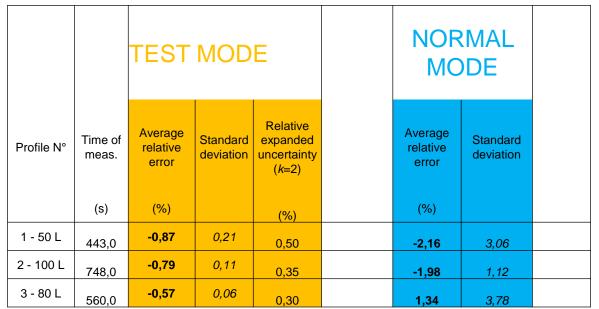
Static measurements, average results of 5 repeats

|                      |               | TEST                         | MOD                   | E                                                     | NORMAL<br>MODE            |                       |  |
|----------------------|---------------|------------------------------|-----------------------|-------------------------------------------------------|---------------------------|-----------------------|--|
| Nominal<br>flow rate | Time of meas. | Average<br>relative<br>error | Standard<br>deviation | Relative<br>expanded<br>uncertainty<br>( <i>k</i> =2) | Average<br>relative error | Standard<br>deviation |  |
| (kg/h)               | (s)           | (%)                          | (%)                   |                                                       | (%)                       | (%)                   |  |
| 50                   | 300,0         | -1,301                       | 0,34                  | 0,73                                                  | -0,659                    | 0,899                 |  |
| 500                  | 300,0         | -0,720                       | 0,06                  | 0,31                                                  | -0,028                    | 3,615                 |  |
| 1000                 | 300,0         | -0,442                       | 0,07                  | 0,31                                                  | 0,927                     | 3,562                 |  |
| 2000                 | 300,0         | -0,259                       | 0,07                  | 0,31                                                  | -1,341                    | 1,533                 |  |



VTT – beyond the obvious

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States


EURAMET

17



#### **Comparison of test mode and normal mode**

Dynamic measurements, average results of 5 repeats





VTT – beyond the obvious

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

EURAMET

18



#### Conclusion

- Both modes gives good results
- End user point of view, meters are accurate
- Specific and accurate tests needs more special flow rigs, like the ones developed during MetroWaMet project









# beyond the obvious

Mika Huovinen mika.huovinen@vtt.fi +358 50 4155 974 @VTTFinland

www.vtt.fi