

In situ Topography Measurement in Tribological Contacts

Timothy Kamps

Workshop on multifunctional ultrafast microprobes for on-the-machine measurements, 19th EUSPEN conference. Bilbao 3rd June 2019

- Motivation for in situ measurements in tribology
- Specific tribology 'challenge'
- Development of an in situ tactile profilometer for a benchtop reciprocating tribometer
- Application of an in situ online optical profilometer to a benchtop rotary tribometer

Motivation

- Characterise the frictional response and wear mechanism(s) of a tribo-contact
- Observe wear mechanism transitions

Methods

Relocation techniques:

 It takes a long time: operator time and test interruption
 Expensive tooling
 Potential for misalignment
 Use standalone measurement equipment

In situ measurements:
 On-line measurement
 Off-line measurement (pause test)
 Samples remain in contact
 Bespoke product

Development of an in situ tactile profilometer for a benchtop reciprocating tribometer

T. J. Kamps¹, J. C. Walker¹, A. G. Plint²

Methodology for investigating Scuffing

Grade 400-15 nodular graphite ferrite matrix, 172±3 Hv.

Grade 250 flake graphite pearlite matrix, 209±9 Hv

Friction Force (N

Scuffing detection techniques

<u>Severe scuffing</u> Rapid rise in friction coefficient Sampling frequency 10 Hz

Time (s)

Mild scuffing

local increases in friction force associated with adhesive wear. Sampling frequency 10 kHz

Kamps, T. J., Walker, J. C., Wood, R. J., Lee, P. M., & Plint, A. G. (2015). Reproducing automotive engine scuffing using a lubricated reciprocating contact. Wear, 332-333, 1193-1199.

Scuffing topography evolution

Southampton

8

Prototype In situ profilometer

Kamps, T. J., Walker, J. C., & Plint, A. G. (2017). In situ stylus profilometer for a high frequency reciprocating tribometer. Surface Topography: Metrology and Properties, 5(3), 034004. https://doi.org/10.1088/2051-672X/aa7da8

Kamps, T. J., Walker, J. C., & Plint, A. G. (2017). In situ stylus profilometer for a high frequency reciprocating tribometer. Surface Topography: Metrology and Properties, 5(3), 034004. https://doi.org/10.1088/2051-672X/aa7da8

11

Phoenix Tribology: *TE-77 In situ profilometer*

Methods

Relocation techniques:

 It takes a long time: operator time and test interruption
 Expensive tooling
 Potential for misalignment
 Use standalone measurement equipment

In situ measurements:
 On-line measurement
 Off-line measurement (pause test)
 Samples remain in contact
 Bespoke product

Application of an in situ online optical profilometer to a benchtop rotary tribometer

Timothy Kamps, Mark Gee, John Nunn and Christopher Jones

Workshop on multifunctional ultrafast microprobes for on-the-machine measurements, 19th EUSPEN conference.

Bilbao 3rd June 2019

NPL Integrated Tribometer

- Pin-on-disc system
- Loaded through lever system below machine table or actuator system
- Allows unrestricted access for multiple sensors
- Current focus on linescan camera for visual imaging and multipoint chromatic aberration probe for real time profilometry

Overall view

Schematic of Layout

Schematic of self zeroing friction device

Scanning through rotation of disc

4 images per revolution Interval for capture selected by user **Final image**

15

Rotating Scratch Test

- Like linear scratch test with 200 µm radius diamond indenter
- Alumina disk
- Continuous rotation
- Allows real time examination of build-up of damage
- Parallel monitoring of friction

Rotating Scratch Test

17

Wear scar evolution

Summary

- In situ profilometry enables the correlation of wear mechanism transitions with friction measurement.
- On-line and Off-line techniques advance current best practice method of re-location.
- In situ profilometry is high value for tribologists as it reduces the number of experiments and samples required to study a wear mechanism transition.
- Future work: Application of microprobes presented to both rotary and reciprocating tribometers.

In situ Topography Measurement in Tribological Contacts

Timothy Kamps

Workshop on multifunctional ultrafast microprobes for on-the-machine measurements, 19th EUSPEN conference. Bilbao 3rd June 2019