

Institut für Halbleitertechnik

Future piezoresistive silicon microprobes for fast roughness measurements with high damping

Michael Fahrbach

Institute of Semiconductor Technology (IHT), TU Braunschweig, Germany and Laboratory for Emerging Nanometrology (LENA), Germany

Introduction

- Commercial Sensors by CiS Forschungsinstitut für • Mikrosensorik GmbH
- 5 mm long, 200 μ m wide and 50 μ m thick •
- Developed for high-speed form and roughness • measurements
- Measurement range of $\pm 200 \ \mu m$ •

Cantilever in air

05.06.2019 | Michael Fahrbach | Future piezoresistive silicon microprobes for fast roughness measurements with high damping | Page 3

Contact mechanics

- Dynamic interaction between tip and surface can be modelled as a spring-damper-element
- Low damping on elastic surfaces
- Surface roughness limits measurement speed

- Damping using a layer of high-loss-module material or active Q-factor control
- Predeflection
- Self-actuation
- Contact resonance using a cantilever with integrated actuator

Polymer damping layer

- Damping and predeflection
- Liquid or dry-film photoresist
- Layer thickness controllable through thinner and number of depositions
- Can be included in fabrication
- Has to be replaced regularly

H.S. Wasisto et al.. Sens. Actuators A: Physical 202 (2013) 90–99

- Cantilever pushed into polymer
- 50 µm thick film deposited
- No polymer near anchor point
- Predeflection of 75 µm achieved

Institut für Halbleitertechnik

 First resonance mode amplitude decreased by 2 dB

 Second resonance mode amplitude decreased more than 20 dB

Piezoelectric damping layer

- Passive damping, predeflection, excitation and active damping
- Material: AIN, AIScN
- Predeflection controllable through sputtering temperature
- Requires much effort to deposit
- High temperatures can harm the electronics of the sensor
- Only thin films possible

- Sensors need to be damped
- Damping using a polymer
- Also creates predeflection
- Increases damping of second vibration mode dramatically
- Needs to be replaced regularly
- Damping using piezoelectric layer
 - Also creates predeflection and serves as integrated actuator
 - Can be used for active damping
 - Worse passive damping than polymer layer

