



Invitation to the final LibforSecUse Workshop

16 & 17 February 2022 (online)

Li-ion batteries can still be used as low-cost energy storage systems after dismantling and repurposing from their first use in electric vehicles. However, the uptake of second life applications is hampered by the lack of accurate and cost-effective characterisation techniques for state of health determination. The European metrology research project LibforSecUse has developed measurement and evaluation procedures to determine the residual capacity of Li-ion battery cells using fast and non-destructive impedance-based methods. The procedures have been established on the basis of a series of life cycle tests of various battery cells measured under specifically defined reproducibility conditions. They have been supported by the development of low-impedance standards and the investigation of respective calibration procedures. Several additional activities have been conducted to support and extend the outcome of the project. Results of post-mortem analysis of fresh and cycled cells were linked with physicochemical models of measured impedances. A life cycle test of modules and measurements of further battery cell types and varying cycling conditions

have been conducted and the feasibility to predict accelerated aging from impedance data has been investigated. Evaluations of those additional investigations have unfortunately remained in a preliminary stage, since they have suffered from delays caused by the Corona pandemic. Nevertheless, the project has provided promising tools for efficient testing of second-use Li-ion batteries.

After a run-time of three and a half years, the project will now be concluded with a final workshop. The involved partners will present the main outcomes and the consortium will be happy to discuss the results and potential uptake and further steps with all interested parties.

Program

<u>Day 1</u>			
10:00	Welcome & Overview	Steffen Seitz	PTB
	The LiBforSecUse project and its objectives and main achievements		
10:15	Low-impedance standards for calibration of impedance measurement devices		
	Impedance simulator for the calibration of LCR-meter in its low impedance range	Frédéric Overney	METAS
	Current shunt defined in a four-terminal-pair configuration	Mohamed Ouameur	LNE

	Passive reactance standards with fixed phase angles	Hans He	RISE
	Reference sampling setup for low impedance calibrations.	Stanislav Mašláň	CMI
	Comparison measurement of impedance standards	Stanislav Mašláň, Steffen Seitz	CMI, PTB
12:30	Lunch break		
13:30	Prediction of residual capacity of LiB cells from impedance-based measurements I		
	Reproducibility conditions of EIS & LCTs	Steffen Seitz	PTB
	Identifying and evaluating impedance-based parameters for residual capacity determination	Chan Hoon Seng	KIT
	Predictive model for battery state-of-health by direct inspection of impedance data	Chan Hoon Seng	KIT
	Predictive model for battery state-of-health using distribution of relaxation times (DRT) analysis on impedance data	Tom Heins	РТВ
14:45	Break		
15:00	Prediction of residual capacity of LiB cells from impedance-based measurements II		
	Predictive model for battery state-of-health using equivalent circuit fit coefficients to impedance data	Edmund Dickinson	NPL
	Predictive model for battery state-of-health and aging rate using nonlinear frequency response analysis (NFRA)	Chan Hoon Seng	KIT
	Assessing lithium-ion battery condition for second use using impedance data: summary and outlook on data-led methods	Edmund Dickinson	NPL
16:15	Expected end of first day		
Day 2			
09:30	Validation of predictive procedures I		
	Post-mortem measurements: FIB-SEM analysis of aged electrodes	Joze Moskon	NIC
	Post-mortem measurements: Disassembling commercial 18650 cells	Emilio Napolitano	JRC
	Post-mortem measurements at Aalto University	Ekaterina Federovskaja	Aalto
10:45	Break		

11.00	Validation of	nradictiva	nrocedures II	
11:00	validation of	predictive	procedures ii	

Physical modelling of impedance spectra **Edmund Dickinson** NPL Physical modelling of NFRA spectra Chan Hoon Seng KIT Preliminary results of module measurements Tom Heins PTB Preliminary results of accelerated aging study Chan Hoon Seng, KIT, PTB Tom Heins Conclusion Steffen Seitz PTB

12:30 End of Workshop

Note: times are in CET

12:20

The workshop is free of charge. It will be conducted with MS-Teams. It is required to register to receive the link to the MS-Teams meeting. To this end, please confirm your participation with an informal email to beatrice.sander@ptb.de and steffen.seitz@ptb.de, stating your name and affiliation.