Logo der Physikalisch-Technischen Bundesanstalt

Messunsicherheit

Arbeitsgruppe 8.42
Nach oben

Übersicht

Der Vergleich von Messergebnissen, zuverlässige Entscheidungsfindungen und Konformitätsbewertungen erfordern, dass Messergebnissen eine Unsicherheit beigeordnet wird. Die Möglichkeit des Vergleichs von Messergebnissen, die an verschiedenen Orten oder zu unterschiedlichen Zeiten erzielt wurden, ist zentral für die internationale Metrologie. Mit dem “Guide to the Expression of Uncertainty in Measurement” (Opens external link in new windowGUM) steht eine Anleitung zur Unsicherheitsermittlung zur Verfügung, die bereits in vielen Anwendungen der Metrologie erfolgreich eingesetzt wurde.

Illustration der Monte Carlo Methode gemäß Opens external link in new windowSupplement 1 to the GUM.

Im Rahmen ihrer jüngeren Entwicklung unterstützt die Metrologie zunehmend neue Themen, um gesellschaftlichen Herausforderungen in Umwelt und Klima, Lebenswissenschaften und Medizin begegnen zu können. Dabei spielen Bildgebung, Spektroskopie, Erdbeobachtungen und Sensornetzwerke eine zunehmend wichtige Rolle. Die zuverlässige Unsicherheitsermittlung ist in diesen Anwendungsfeldern besonders wichtig, etwa um die Diagnose eines Tumors abzusichern im Rahmen der quantitativen Bildgebung oder bei der Kontrolle von Umweltverschmutzungen. Der GUM wird allerdings den Herausforderungen in diesen Anwendungen nicht vollständig gerecht, und die Entwicklung statistischer Verfahren für eine verbesserte Unsicherheitsermittlung wird dringend benötigt.

Nach oben

Forschung

Der Schwerpunkt in der Arbeitsgruppe 8.42 der PTB liegt auf der Entwicklung Bayes’scher Verfahren zu Unsicherheitsermittlung. Diese Entwicklung wird im Zusammenhang mit unterschiedlichen Forschungsgebieten wie der „large-scale data analysis“ oder des „deep learning“ durchgeführt. Ebenso werden Bayes’sche Inferenzverfahren für eine mögliche Erweiterung der aktuellen GUM-Methodik in der Arbeitsgruppe 8.42 der PTB entwickelt. Beispiele hierfür sind einfache Verfahren, mit denen vorhandenes Vorwissen auf Priorverteilungen abgebildet werden kann, sowie Berechnungsmethoden. „Open source software“ wird bereitgestellt, um die Anwendung der entwickelten Verfahren zu erleichtern.

Nach oben

Software

Nach oben

Publikationen

Publikations Einzelansicht

Artikel

Titel: Quantitative magnetic resonance spectroscopy: semi-parametric modeling and determination of uncertainties
Autor(en): C. Elster, F. Schubert, A. Link, M. Walzel, F. Seifert and H. Rinneberg
Journal: Magnetic resonance in medicine
Jahr: 2005
Band: 53
Ausgabe: 6
Seite(n): 1288--96
DOI: 10.1002/mrm.20500
ISSN: 0740-3194
Web URL: http://www.ncbi.nlm.nih.gov/pubmed/15906296
Schlüsselwörter: Bayes Theorem,Brain Chemistry,Computer Simulation,Computer-Assisted,Humans,Least-Squares Analysis,Magnetic Resonance Spectroscopy,Magnetic Resonance Spectroscopy: methods,Models, Statistical,Regression,Signal Processing, Computer-Assisted,Statistical
Marker: 8.42, Unsicherheit, in-vivo
Zusammenfassung: A semi-parametric approach for the quantitative analysis of magnetic resonance (MR) spectra is proposed and an uncertainty analysis is given. Single resonances are described by parametric models or by parametrized in vitro spectra and the baseline is determined nonparametrically by regularization. By viewing baseline estimation in a reproducing kernel Hilbert space, an explicit parametric solution for the baseline is derived. A Bayesian point of view is adopted to derive uncertainties, and the many parameters associated with the baseline solution are treated as nuisance parameters. The derived uncertainties formally reduce to Cramér-Rao lower bounds for the parametric part of the model in the case of a vanishing baseline. The proposed uncertainty calculation was applied to simulated and measured MR spectra and the results were compared to Cramér-Rao lower bounds derived after the nonparametrically estimated baselines were subtracted from the spectra. In particular, for high SNR and strong baseline contributions the proposed procedure yields a more appropriate characterization of the accuracy of parameter estimates than Crémer-Rao lower bounds, which tend to overestimate accuracy.

Zurück zur Listen Ansicht

Nach oben