This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-04-19 Creation time: 19-29-42 --- Number of references 40 article WeissenbrunnerESS2023 A virtual flow meter downstream of various elbow configurations Metrologia 2023 7 17 8.4,8.41,Flow, UQ accepted DOI 10.1088/1681-7575/ace7d6 AndreasWeissenbrunner Ann-KathrinEkat MartinStraka SonjaSchmelter article WeissPBOS2023 Derivation and validation of a reference data-based real gas model for hydrogen Elsevier International Journal of Hydrogen Energy 2023 3 30 8.41,Flow accepted https://doi.org/10.1016/j.ijhydene.2023.03.073 S.Weiss J.Polansky M.Bär K.Oberleithner S.Schmelter article WebnerPKS2023 Sensitivity analysis of threshold parameters in slug detection algorithms International Journal of Multiphase Flow 2023 1 158 104278 8.41,8.4, Flow 10.1016/j.ijmultiphaseflow.2022.104278 10.1016/j.ijmultiphaseflow.2022.104278 F.Webner J.Polansky S.Knotek S.Schmelter phdthesis Olbrich2022 Quantitative methods for the characterization of separated and intermittent multiphase flow patterns 2022 12 20 8.4, 8.41, flow TU Berlin https://doi.org/10.14279/depositonce-16659 MarcOlbrich conference SchmelterKOB2022 Comparison of different slug frequency calculation methods for the validation of two-phase flow simulations 2022 10 21 8.4,8.41,Flow 19th International Flow Measurement Conference (FLOMEKO) Chongqing, China 19th International Flow Measurement Conference (FLOMEKO) 17-21.10.2022 S.Schmelter S.Knotek M.Olbrich M.Bär conference WeissMOBS2022 Numerical investigation of boundary layer effects within cylindrical critical flow Venturi nozzles 2022 10 21 8.4,8.41,Flow 19th International Flow Measurement Conference (FLOMEKO) Chongqing, China 19th International Flow Measurement Conference (FLOMEKO) 17-21.10.2022 S.Weiss B.Mickan K.Oberleithner M.Bär S.Schmelter conference BocklerdMSSB2022 Metrology infrastructure for high-pressure gas and liquified hydrogen flows 2022 10 8.4,8.41,Flow 19th International Flow Measurement Conference (FLOMEKO) Chongqing, China 19th International Flow Measurement Conference (FLOMEKO) 17-21.10.2022 H.-B.Böckler M.de Huu R.Maury S.Schmelter M.D.Schakel O.Büker article OlbrichRKLvBOS2022 Deep learning based liquid level extraction from video observations of gas-liquid flows International Journal of Multiphase Flow 2022 9 10 8.4,8.41,Flow,ML https://doi.org/10.1016/j.ijmultiphaseflow.2022.104247 M.Olbrich L.Riazy T.Kretz T.Leonard D.S.van Putten M.Bär K.Oberleithner S.Schmelter article StrakaWKHS2022 Simulation Uncertainty for a Virtual Ultrasonic Flow Meter Metrology 2022 7 18 2 3 335-359 8.41,8.4,Flow,UQ https://doi.org/10.3390/metrology2030021 MartinStraka AndreasWeissenbrunner ChristianKoglin ChristianHöhne SonjaSchmelter article PolanskyS2022 Implementation of turbulence damping in the OpenFOAM multiphase flow solver interFoam Archives of Thermodynamics 2022 3 1 43 1 21-43 Multiphase flow, Stratified flow, Turbulence damping, Computational fluid dynamics, OpenFOAM, Reynolds-averaged Navier–Stokes, Detached eddy simulation, Delayed detached eddy simulation 8.4,8.41,Flow http://journals.pan.pl/Content/122890/PDF/art02_internet.pdf 10.24425/ather.2022.140923 JiriPolansky SonjaSchmelter article KnotekSO2021 Assessment of different parameters used in mesh independence studies in two-phase slug flow simulations Measurement: Sensors 2021 9 28 18 100317 8.4,8.41,Flow 2665-9174 10.1016/j.measen.2021.100317 StanislavKnotek SonjaSchmelter MarcOlbrich article SchmelterOKB2021 Analysis of multiphase flow simulations and comparison with high-speed video observations Measurement: Sensors 2021 9 23 18 100154 8.4,8.41,Flow 2665-9174 10.1016/j.measen.2021.100154 SonjaSchmelter MarcOlbrich StanislavKnotek MarkusBär article OlbrichHLSBOS2021 Comparing temporal characteristics of slug flow from tomography measurements and video observations Measurement: Sensors 2021 9 22 18 100222 8.4,8.41,Flow 2665-9174 10.1016/j.measen.2021.100222 MarcOlbrich AndrewHunt TerriLeonard DennisS. van Putten MarkusBär KilianOberleithner SonjaSchmelter article SchmelterKOFB2021 On the influence of inlet perturbations on slug dynamics inhorizontal multiphase flow a computational study Metrologia 2021 1 21 58 1 014003 8.4,8.41,Flow 10.1088/1681-7575/abd1c9 SSchmelter SKnotek MOlbrich AFiebach MBär article SchmidtFSSLS2021 The impact of 4D flow displacementartifacts on wall shear stress estimation Magnetic Resonance in Medicine 2021 85 6 3154-3168 8.4,8.41,Flow 10.1002/mrm.28641 SSchmidt SFlassbeck SSchmelter ESchmeyer M ELadd SSchmitter article OlbrichSBSOS2020 Identification of coherent structures in horizontal slug flow Flow Measurement and Instrumentation 2020 10 16 76 101814 8.4,8.41,Flow 10.1016/j.flowmeasinst.2020.101814 MOlbrich ESchmeyer MBär MSieber KOberleithner SSchmelter article OlbrichBOS2020 Statistical characterization of horizontal slug flow using snapshot proper orthogonal decomposition International Journal of Multiphase Flow 2020 9 6 134 103453 8.4,8.41,Flow 10.1016/j.ijmultiphaseflow.2020.103453 MOlbrich MBär KOberleithner SSchmelter article SchmelterOSB2020 Numerical simulation, validation, and analysis of two-phase slug flow in large horizontal pipes Flow Measurement and Instrumentation 2020 3 10 73 101722 8.4,8.41,Flow 10.1016/j.flowmeasinst.2020.101722 SSchmelter MOlbrich ESchmeyer MBär article SchmelterOSB2019 Numerical simulation, validation, and analysis of two-phase slug flow in large horizontal pipes Proceedings of the 18th International Flow Measurement Conference FLOMEKO 2019 2019 7 1 8.4,8.41,Flow SSchmelter MOlbrich ESchmeyer MBär article OlbrichSBSOS2019 Identification of coherent structures in horizontal slug flow Proceedings of the 18th International Flow Measurement Conference FLOMEKO 2019 2019 7 1 8.4,8.41,Flow MOlbrich ESchmeyer MBär MSieber KOberleithner SSchmelter article RiazySOAvNS2019 Porous medium 3D flow simulation of contrast media washout in cardiac MRI reflects myocardial injury Magnetic Resonance in Medicine 2019 4 16 advance online publication 8.4,8.41, flow 10.1002/mrm.27756 LRiazy TSchäffter MOlbrich J ASchueler Fv. Knobelsdorff-Brenkenhoff TNiendorf JSchulz-Menger article OlbrichSROBS2018 Validation of simulations in multiphase flow metrology by comparison with experimental video observation J. Phys.: Conf. Series 2018 11 1 1065 9 092015 8.4,8.41,Flow 10.1088/1742-6596/1065/9/092015 MOlbrich ESchmeyer LRiazy KOberleithner MBär SSchmelter article SchmelterOSB2018 Validation of multiphase flow simulations by comparison with experimental video observations Proceedings of the North Sea Flow Measurement Workshop 2018 2018 11 1 8.4,8.41,Flow SSchmelter MOlbrich ESchmeyer MBär article StrakaFEK2018 Hybrid simulation of a segmental orifice plate Flow Measurement and Instrumentation 2018 2 14 60 124--133 8.4,8.41,Flow,UQ 10.1016/j.flowmeasinst.2018.02.006 MStraka AFiebach TEichler CKoglin article WeissenbrunnerFJT2017 A coupled numerical and laser optical method for on-site calibration of flow meters Eccomas Proceedia UNCECOMP 2017 6 17 5393 576--587 8.4,8.41,Flow,UQ 10.7712/120217.5393.16913 AWeissenbrunner AFiebach MJuling P UThamsen article FiebachSKS2016 Numerical simulation of multiphase flow in a vertically mounted Venturi flow meter Proceedings of the 17th International Flow Measurement Conference FLOMEKO 2016 2016 9 29 8.4,8.41,Flow AFiebach ESchmeyer SKnotek SSchmelter article KnotekFS2016 Numerical simulation of multiphase flows in large horizontal pipes Proceedings of the 17th International Flow Measurement Conference FLOMEKO 2016 2016 9 29 8.4,8.41,Flow SKnotek AFiebach SSchmelter article WeissenbrunnerFSMTL2016 Simulation-based determination of systematic errors of flow meters due to uncertain inflow conditions Flow Measurement and Instrumentation 2016 8 29 8.4,8.41,Flow,UQ in_preparation 10.1016/j.flowmeasinst.2016.07.011 AWeissenbrunner AFiebach SSchmelter MBär P.UThamsen TLederer article Schmelter_2016_1 Polynomchaos zur Unsicherheitsquantifizierung in Strömungssimulationen für metrologische Anwendungen tm-Technisches Messen 2016 1 8 83 2 71-76 8.41, Flow, UQ http://www.degruyter.com/view/j/teme.2016.83.issue-2/teme-2015-0109/teme-2015-0109.xml SSchmelter AFiebach AWeissenbrunner article Lindner_JFE2015 A Computational Fluid Dynamics Study on the Gas Mixing Capabilities of a Multiple Inlet System J. Fluids Eng 2016 1 5 138 3 031302 8.41, Flow 8.41, Flow 10.1115/1.4031380 GLindner SSchmelter RModel ANowak VEbert MBär article e73c330da32016_2 Numerical prediction of the flow rate through a flow meter with uncertain inflow profile Proceedings of Imeko 2015 XXI World Congress Measurement in Research and Industry 2015 11 30 8.41, Flow, UQ AWeissenbrunner AFiebach SSchmelter MStraka MBär TLederer article Schmelt_JCF2015 Numerical prediction of the influence of uncertain inflow conditions in pipes by polynomial chaos Int. J. Comp. Fluid. Dyn. 2015 1 5 29 6-8 411-422 8.41, Flow, UQ 10.1080/10618562.2015.1112899 SSchmelter AFiebach RModel MBär article Wendt2014 Untersuchungen zum Temperaturverhalten von Flüssigkeiten in großen Lagertanks Technische Sicherheit 2014 11 13--17 8.41 8.41, Flow GWendt RJost SSchmelter DWerner article f3ee8757792015 Numerical investigation of temperature distributions in large storage tanks Proceedings of Flomeko 2013 16th International Flow Measurement Conference 2013 12 31 8.41, Flow SSchmelter RModel GWendt MBär article Jousten2014 A standard to test the dynamics of vacuum gauges in the millisecond range Vacuum 2013 100 14--17 Vacuum gauges that control fast processes in industrial applications, e.g. load locks, should immediately react to pressure changes. To study the response time of vacuum gauges to rapid pressure changes, a dynamic vacuum standard was developed where the pressure may change from 100 kPa to 100 Pa within 20 ms in a step-wise manner or within longer times up to 1 s in a predictable manner. This is accomplished by a very fast opening gate valve DN40 and exchangeable orifices and ducts through which the mass flow rate can be calculated by gas flow simulation software. A simple physical model can be used to approximate the calculations. Experiments have been performed with capacitance diaphragm gauges with improved electronics to give a read-out every 0.7 ms. Preliminary results indicate that their response time is at most 1.7 ms, but may be significantly less. Choked flow,Dynamic pressure,Response time,Vacuum gauge,Vacuum metrology 8.41,Flow fileadmin/internet/fachabteilungen/abteilung_8/8.4_mathematische_modellierung/8.42/DYNAMIK/842_dynamik_Sensors_2010_10_7621.pdf http://www.sciencedirect.com/science/article/pii/S0042207X13002546 0042207X 10.1016/j.vacuum.2013.07.037 KJousten SPantazis JButhig RModel MWüest JIwicki inbook Model_2012 Numerical simulations and turbulent modelling for application in flow metrology 2012 84 8.41, Flow F. Pavese, M. Bär, J.-R. Filtz, A. B. Forbes, L. Pendrill and K. Shirono World Scientific, New Jersey RModel SSchmelter GLindner MBär article Forster2011 Untersuchungen zur Explosionsgefahr beim Umschlag von Kerosin Jet A-1 Technische Sicherheit 2011 1 18--27 8.41, Flow HFörster WGünther GLindner RModel inproceedings Schmelt2011 Numerical investigation of turbulent natural convection in differentially heated square cavity 2011 1389 106-109 8.41, Flow AIP Conf. Proc. S.Schmelter G.Lindner G.Wendt R.Model article Model2005b An identification procedure for thermal transport properties of layered solids by means of transient measurements Thermal Conductivity 26/Thermal Expansion 14 2005 346--357 8.41, Flow RModel UHammerschmidt article Model2005 Thermal Transport Properties of Layered Materials: Identification by a New Numerical Algorithm for Transient Measurements International Journal of Thermophysics 2005 26 1 165--178 8.41 8.41, Flow http://www.researchgate.net/publication/226424470<prt>\_</prt>Thermal<prt>\_</prt>Transport<prt>\_</prt>Properties<prt>\_</prt>of<prt>\_</prt>Layered<prt>\_</prt>Materials<prt>\_</prt>Identification<prt>\_</prt>by<prt>\_</prt>a<prt>\_</prt>New<prt>\_</prt 0195-928X 10.1007/s10765-005-2363-1 RModel