Offenlegungsschrift

Aktenzeichen: 10 2017 119 551.3
Anmeldetag: 25.08.2017
Offenlegungstag: 28.02.2019

Anmelder:
Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Energie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt, 38116 Braunschweig, DE

Vertreter:
Gramm, Lins & Partner Patent- und Rechtsanwälte PartGmbB, 38122 Braunschweig, DE

Erfinder:
Li, Zhi, Dr., 38116 Braunschweig, DE; Brand, Uwe, Dr., 30916 Isenhausen, DE

Int Cl.:
B81B 7/02 (2006.01)
B81B 3/00 (2006.01)
G01Q 30/00 (2010.01)
G01Q 60/24 (2010.01)
G01L 1/04 (2006.01)
G01L 1/08 (2006.01)
G02B 21/00 (2006.01)

Ermittelte Stand der Technik:

Prüfungsantrag gemäß § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen.

Bezeichnung: Normal

Zusammenfassung: Die Erfindung betrifft ein Normal (10) in Form eines mikro-elektronechanischen Systems mit (a) einem Referenz-Oberflächenelement (12), das (i) eine ebene Referenz-Oberfläche (O) und (ii) eine Ausnehmung (18) hat, (b) einem Schaft (14), (c) zumindest einer Feder (16), (d) wobei der Schaft (14) (i) quer zur Referenz-Oberfläche (O) bewegbar ist, (ii) eine ebene Stirnfläche (20) aufweist und (iii) in eine Null-Stellung bringbar ist, in der sich die Stirnfläche (20) entlang der Referenz-Oberfläche (O) erstreckt, (iv) wobei die zumindest eine Feder (16) einer Auslenkung (Δd) des Schafts (14) aus der Null-Stellung entgegenwirkt, und (e) einer Auslenkungserfasungsvorrichtung (28) zum Erfassen der Auslenkung (Δd).
Beschreibung

[0002] Der Erfindung liegt die Aufgabe zugrunde, die Kalibrierung von Mikroskopen zu verbessern.

[0003] Die Erfindung löst das Problem durch ein Normal in Form eines mikro-elektromechanischen Systems mit (a) einem Referenz-Oberflächenlement, das eine ebene Referenz-Oberfläche und eine Ausnehmung hat, (b) einen Schacht, (c) zumindest eine Feder, wobei (d) der Schacht quer zur Referenz-Oberfläche bewegbar ist, eine ebene Stirnfläche aufweist und in eine Null-Stellung bringbar ist, in der sich die Stirnfläche entlang der Referenz-Oberfläche erreckt, wobei die zumindest eine Feder einer Auslenkung des Schachts aus der Null-Stellung entgegenwirkt, und (e) einer Auslenkungserfassungsvorrichtung zum Erfassen der Auslenkung.

[0005] Im Rahmen der vorliegenden Beschreibung wird unter dem Merkmal, dass der Schacht quer zur Referenz-Oberfläche bewegbar ist, insbesondere verstanden, dass dann, wenn eine Kraft, die senkrecht zur Referenz-Oberfläche verläuft, auf die Stirnfläche wirkt, sich der Schacht in eine Bewegungsrichtung bewegt, wobei die Bewegungsrichtung mit der Referenz-Fläche einen Winkel von 90° ± ε ein- schließt, wobei ε möglichst klein ist, beispielsweise höchstens 5° beträgt.

[0006] Unter dem Merkmal, dass sich die Stirnfläche entlang der Referenz-Oberfläche erstreckt, wird insbesondere verstanden, dass die Referenz-Oberfläche in guter Näherung als Ebene beschrieben werden kann.

[0008] Die Ausnehmung vorzugsweise eine Öffnungspalte von zumindest 2 µm und/oder höchstens 500 µm. Auf diese Weise ist sichergestellt, dass einerseits ein Kantilever hinreichend tief durch die Ausnehmung hindurchgreifen kann und andererseits die Referenz-Oberfläche und die Stirnfläche nur einen kleinen Winkel versetzt zueinander haben. Unter dem Innendurchmesser wird dabei insbesondere der Innenkreisdurchmesser verstanden, also der Durchmesser des gedachten Zylinders maximalen Durchmessers, der durch die Ausnehmung passt.

[0011] Unter der Auslenkungserfassungsvorrichtung wird insbesondere eine Struktur verstanden, mittels der eine Auslenkung, also eine Veränderung der Position des Schachts relativ zu einer Ausgangs-Position, insbesondere zur Null-Stellung, bestimmbar ist. Insbesondere ist die Auslenkungserfassungsausrich- tung so ausgebildet, dass durch Erfassen einer Messgröße auf eindeutige Weise die Auslenkung bestimmbar ist. Es kann sich bei dieser Messgröße um einen Weg handeln, das ist aber nicht notwendig. Insbesondere ist es möglich, dass die Auslenkung auf Basis ei-
nes elektrischen und/oder optischen Messgeräts erfassbar ist.

[0012] Ein Normal umfasst stets einen zugehörigen Kalibrierschein, in dem die relevanten Größen, im vorliegenden Fall die Federkonstante/oder die Abhängigkeit der Auslenkung von einer Messgröße, die von der Auslenkungserfassungsvorrichtung abgegriffen ist, angegeben ist.

[0013] Unter dem Merkmal, dass das Normal in Form eines mikro-elektromechanischen Systems ausgebildet ist, wird insbesondere verstanden, dass das Referenz-Oberflächenelement, die Feder und der Schacht, sowie gegebenenfalls einen Antrieb für den Schacht, aus einem Substrat, insbesondere einem Silizium-Einkristall, herausgearbeitet, insbesondere herausgeätzt sind.

[0019] Vorzugsweise ist der zweite Spiegel als spiegelnde Fläche einer Lichtleitfaser ausgebildet, wobei die Lichtleitfaser als Lichtquelle fungiert. In diesem Fall bilden die beiden Spiegel ein Fabry-Perot-Interferometer, das Interferenzmuster wird in die Lichtleitfaser eingekoppelt und beispielsweise von der Auswerteinheit ausgewertet.

[0020] Vorzugsweise ist die Lichtquelle ausgebildet zum Abgeben von Licht einer Wellenlänge, wobei für einen Nullkraft-Abstand zwischen einer ersten Ausgleichsebene durch die Referenz-Oberfläche und einer zweiten Ausgleichsebene durch die Stirnfläche bei Abwesenheit einer externen Kraft auf den Schaft gilt: $g = \left(M \cdot \frac{1}{2} \right) \frac{\lambda^2}{4} + \epsilon$. Dabei ist M eine natürliche Zahl und es gilt $|k| < \frac{1}{10}(M \cdot \frac{1}{2})^\frac{\lambda^2}{4}$.

[0022] Vorzugsweise hat die zumindest eine Feder eine Federkonstante bezüglich einer Auslenkung quer zur Referenz-Oberfläche von höchstens 1000 Newton pro Meter. Vorzugsweise ist die Federkonstante größer als 0,01 Newton pro Meter.

[0023] Gemäß einer bevorzugten Ausführungsform ist die Auswerteinheit eingerichtet zum automatischen Durchführen eines Verfahrens mit den Schritten: (i) Erfassen einer Auslenkung des Schafts, die von einer auf den Schaft wirkenden Kraft bedingt ist, und (ii) Berechnen der Kraft aus der Auslenkung. Die Auslenkung wird beispielsweise anhand einer Federkonstante oder anhand eines Kennfeldes, in dem die Beziehung zwischen der Auslenkung und der Kantlie-

[0027] Im Folgenden wird die Erfindung anhand der beigefügten Zeichnungen näher erläutert. Dabei zeigt Fig. 1 eine schematische Zeichnung eines erfindungsgemäßen Normals und Fig. 2 eine Zeichnung eines erfindungsgemäßen Normals.

[0028] Fig. 1 zeigt ein erfindungsgemäses Normal, das im vorliegenden Fall als pN-Krafttransfernormal ausgebildet ist und ein Referenz-Oberflächen- element 12 mit einer Referenz-Oberfläche O, einem Schaft 14 und zwei Federn 16,1, 16,2. Im Referenz-Oberflächenelement 12 ist eine Ausnehmung 18 eingebracht, die einen Innendurchmesser w, beispielsweise w = 6 μm, aufweist.

[0029] Die Federn 16,1 (i = 1, ..., N, wobei N die Zahl der Federn ist) halten den Schaft 14 so, dass er in eine Bewegungsrichtung R geführt von den Federn 16,1 gelagert ist. Die Bewegungsrichtung R verläuft quer zur Referenz-Oberfläche O. Im vorliegenden Fall ist der Winkel zwischen der Referenz-Oberfläche O und der Bewegungsrichtung R 90°.

koppelt und von einem Sensor 48 erfasst, der mit der Auswerteeinheit 36 verbunden ist.

\[g = \left(\frac{M - \frac{1}{2}}{4} + e \right) \]

gilt, wobei M eine natürliche Zahl (M = \{1, 2, \ldots\}) ist. In der Regel ist M kleiner als 10.

[0036] Eine Federkonstante k für alle Federn 16.1 gemeinsam beträgt beispielsweise k = 0,05 N/m. Zwischen einer auf die Stirnfläche 20 aufgebrachten Kraft \(F_{20} \) und einer Änderung \(\Delta d \) des Abstands \(d \) besteht die Beziehung \(F_{20} = k \Delta d \).

[0037] Fig. 2 zeigt einen maßstabgerechten Ausschnitt eines erfindungsgemäßen Normals 10. Es ist zu erkennen, dass das Normal 10 vier Feder 16.1, 16.2, 16.3, 16.4 aufweist, die allesamt mänderför mig ausgebildet sind, um eine besonders kleine Federkonstante k zu erreichen. Der Schaft 14 weist ein Zellenstruktur 50 auf, um eine möglichst geringe Masse zu erreichen. Die in Fig. 2 gezeigten Komponenten des Normals 10 sind lithographisch aus einem Silizium-Einkristall hergestellt. Das Normal 10 ist daher ein mikro-elektronomisches System (MEMS).

[0038] Zum Durchführen eines erfindungsgemäßen Verfahrens wird das Normal 10 in ein Rasterkraftmikroskop eingebracht. Mit einem Kantleiver 52 (Fig. 1) kann zunächst die Referenz-Oberfläche O abgetastet werden. Die Referenz-Oberfläche O kann damit gleichzeitig als Oberflächennormal dienen. Zum Kalibrieren der Kraftmessung des Rasterkraftmikroskops wird der Kantleiver 52 so positioniert, dass seine Spitzen auf die Stirnfläche 20 gedrückt und so die Kraft \(F_{20} \) ausgeübt wird.

[0039] Die Auslenkungsverfassungsrichtung 28, im vorliegenden Fall in Form des Fabry-Perot-Interferometers 38 misst beständig den Abstand d. Die Auswerteeinheit 36 ist so ausgebildet, dass sie eine Spannung U zwischen die beiden Kammelektroden 32, 34 anlegt, wobei die Spannung U so gewählt ist, dass die entstehende elektrostatische Kraft \(F_{el} \) der Kraft \(F_{20} \) entspricht. In anderen Werten wird die Spannung U so geregelt, dass die Verschiebung \(\Delta d \) des Schaufs 14 null ist.

[0040] Aus der angelegten Spannung U berechnet dann die Auswerteeinheit 36 die Kraft \(F_{20} \). Alternativ wird keine Spannung U oder eine konstante Spannung U angelegt und die Auslenkung \(\Delta d \), insbesondere mittels des Interferometers 38, gemessen. Aus der Auslenkung und der Federkonstante k wird dann die Kraft \(F_{20} \) berechnet.

Bezugszeichenliste

<table>
<thead>
<tr>
<th>Zahl</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Normal</td>
</tr>
<tr>
<td>12</td>
<td>Referenz-Oberflächenelement</td>
</tr>
<tr>
<td>14</td>
<td>Schaft</td>
</tr>
<tr>
<td>16</td>
<td>Feder</td>
</tr>
<tr>
<td>18</td>
<td>Ausnehmung</td>
</tr>
<tr>
<td>20</td>
<td>Stirnfläche</td>
</tr>
<tr>
<td>22</td>
<td>Kopf</td>
</tr>
<tr>
<td>24</td>
<td>Mantelfläche</td>
</tr>
<tr>
<td>26</td>
<td>Kegelfläche</td>
</tr>
<tr>
<td>28</td>
<td>Auslenkungserfassungsrichtung</td>
</tr>
<tr>
<td>30</td>
<td>Antrieb, Kammantrieb</td>
</tr>
<tr>
<td>32</td>
<td>erste Kammelektrode</td>
</tr>
<tr>
<td>34</td>
<td>zweite Kammelektrode</td>
</tr>
<tr>
<td>36</td>
<td>Auswerteeinheit</td>
</tr>
<tr>
<td>38</td>
<td>Interferometer</td>
</tr>
<tr>
<td>40</td>
<td>erster Spiegel</td>
</tr>
<tr>
<td>42</td>
<td>zweiter Spiegel</td>
</tr>
<tr>
<td>44</td>
<td>Lichtquelle, Lichtleitfaser</td>
</tr>
<tr>
<td>46</td>
<td>Laser</td>
</tr>
<tr>
<td>48</td>
<td>Sensor</td>
</tr>
<tr>
<td>50</td>
<td>Zellenstruktur</td>
</tr>
<tr>
<td>52</td>
<td>Kantleiver</td>
</tr>
<tr>
<td>C</td>
<td>Kapazität</td>
</tr>
<tr>
<td>d</td>
<td>Abstand</td>
</tr>
<tr>
<td>F_{20}</td>
<td>Kraft</td>
</tr>
<tr>
<td>g</td>
<td>Nullkraft-Abstand</td>
</tr>
</tbody>
</table>
i Laufindex
k Federkonstante
L Längsachse
M natürliche Zahl
N Zahl der Federn
O Referenz-Oberfläche
R Bewegungsrichtung
w Innendurchmesser
α_{18} Ausnehmungs-Kegelwinkel
α_{22} Kopf-Kegelwinkel
λ Wellenlänge
Δd Auslenkung
U Spannung
F_{el} elektrostatische Kraft

Patentansprüche

1. Normal (10) in Form eines mikro-elektromechanischen Systems mit
 (a) einem Referenz-Oberflächenlement (12), das
 (i) eine ebene Referenz-Oberfläche (O) und
 (ii) eine Ausnehmung (18) hat,
 (b) einem Schaft (14),
 (c) zumindest einer Feder (16),
 (d) wobei der Schaft (14)
 (i) quer zur Referenz-Oberfläche (O) bewegbar ist,
 (ii) eine ebene Stirnfläche (20) aufweist und
 (iii) in eine Null-Stellung bringbar ist, in der sich die
 Stirnfläche (20) entlang der Referenz-Oberfläche (O)
 erstreckt,
 (iv) wobei die zumindest eine Feder (16) einer Auslenkung (Δd) des Schafts (14) aus der Null-Stellung entgegenwirkt, und
 (e) einer Auslenkungserfassungsvorrichtung (28) zum Erfassen der Auslenkung (Δd).

2. Normal (10) nach Anspruch 1, **gekennzeichnet durch** einen Antrieb (30),
 - der mit dem Schaft (14) verbunden ist und
 - mittels dem der Schaft (14) quer zur Referenz-Oberfläche (O) bewegbar ist.
 - wobei der Antrieb ein elektrostatischer Kammantrieb (30) ist und eine erste Kammelektrode (32) und eine zweite Kammelektrode (34) aufweist.

3. Normal (10) nach einem der vorstehenden Ansprüche, **gekennzeichnet**, dass
 (a) der Schaft (14) einen Kopf (22),
 - an dem die Stirnfläche (20) ausgebildet ist und
 - der eine kegelstumpfförmige Mantelfläche (24) hat, besitzt,
 - wobei die kegelstumpfförmige Mantelfläche (24) einen Kopf-Kegelwinkel (α_{22}) aufweist, und dass
 (b) die Ausnehmung (18)
 - kegelstumpfförmig ist,
 - sich von der Referenz-Oberfläche (O) weg erweitert und
 - einen Ausnehmungs-Kegelwinkel (α_{18}) hat, der dem Kopf-Kegelwinkel (α_{22}) entspricht.

4. Normal (10) nach einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, dass der Kopf-Kegelwinkel (α_{22}) 30° ± 5° beträgt.

5. Normal (10) nach einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, dass die Auslenkungserfassungsvorrichtung (28) ein Interferometer (38), insbesondere ein Fabry-Perot-Interferometer, umfasst, das
 - einen ersten Spiegel (40), der mit dem Schaft (14) verbunden ist,
 - einen zweiten Spiegel (42) und
 - eine Lichtquelle (44) aufweist.

6. Normal (10) nach Anspruch 5, **dadurch gekennzeichnet**, dass
 (a) die Lichtquelle (44) zum Abgeben von Licht einer Wellenlänge (λ) ausgebildet ist und
 (b) für einen Nullkraft-Abstand (g) zwischen einer ersten Ausgleichsebene durch die Referenz-Oberfläche (O) und einer zweiten Ausgleichsebene durch die Stirnfläche (20) bei Abwesenheit einer externen Kraft (F_{20}) auf den Schaft (14)
 \[g = \left(M - \frac{1}{2} \right) \frac{\lambda}{4} + \varepsilon \]
 gilt, wobei M eine natürliche Zahl ist und \(|\varepsilon| < \frac{1}{10} \left(M - \frac{1}{2} \right) \frac{\lambda}{4} \)
 gilt.

7. Normal (10) nach einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, dass die zumindest eine Feder (16) eine Federkonstante (k) bezüglich einer Auslenkung (Δd) quer zur Referenz-Oberfläche (O) von höchstens 1 Millinewton pro Mikrometer hat.

8. Normal (10) nach einem der vorstehenden Ansprüche, **gekennzeichnet durch** eine Auswerteeinheit (36), die eingerichtet ist zum automatischen Durchführen eines Verfahrens mit den Schritten:
 (i) Erfassen einer Auslenkung (Δd) des Schafts (14), die von einer auf den Schaft (14) wirkenden Kraft (F_{20}) bedingt ist, und
 (ii) Berechnen der Kraft (F_{20}) aus der Auslenkung (Δd).

9. Normal (10) nach einem der Ansprüche 1 bis 7, **gekennzeichnet durch** eine Auswerteeinheit (36), die eingerichtet ist zum automatischen Durchführen eines Verfahrens mit den Schritten:
 (i) Regeln einer Spannung (U), die zwischen den Kammelektroden (32, 34) anliegt, so dass die Auslenkung (Δd), die von einer auf die Stirnfläche (20) wirkenden Kraft (F_{20}) verursacht ist, kompensiert wird.
(ii) Erfassen der zum Kompensieren notwendigen Kompensations-Spannung und
(iii) Berechnen der aufgebrachten Kraft \((F_{20}) \) aus der Kompensations-Spannung.

10. Verfahren zum Kalibrieren eines Rasterkraftmikroskops mit den Schritten:
(i) Ausüben einer Soll-Kraft mit einem Kantilever (52) des Rasterkraftmikroskops auf eine Stirnfläche (20) eines Schafts (14) eines Normals (10) nach einem der Ansprüche 1 bis 7,
(ii) Messen einer Ist-Kraft mit dem Normal (10) in Form eines Pikonewton-Krafttransformnormals und
(iii) Kalibrieren des Rasterkraftmikroskops anhand der Ist-Kraft.

11. Verfahren zum Kalibrieren eines optischen Mikroskops mit den Schritten:
(i) Ermitteln einer ersten Ist-Position und einer zweiten Ist-Position der Stirnfläche (20) eines Normals (10) nach einem der Ansprüche 1 bis 7,
(ii) Ermitteln der ersten Mess-Position und der zweiten Mess-Position der Stirnfläche (20) mittels des Mikroskops und
(iii) Kalibrieren des Mikroskops anhand der Ist-Positionen.

Es folgt eine Seite Zeichnungen