Prüfungsantrag gemäß § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen.

(54) Bezeichnung: Dickenmessvorrichtung zur Messung einer Dicke flacher Werkstücke und zugehöriges Verfahren

(57) Zusammenfassung: Die Erfindung betrifft eine Dickenmessvorrichtung (16) zur Messung einer Dicke flacher Werkstücke, insbesondere Folien (14), mit (a) einem ersten Arm (20) und einem zweiten Arm (22), die einen Zwischenraum (24) zum Einführen des Werkstücks zwischen einander bilden, (b) einem ersten Interferometer (26) zum Aussenden eines ersten Lichtstrahls (34) auf das Werkstück (14) und Erfassen einer ersten Phase (Φ_1) zwischen dem ersten Lichtstrahl (34) und einem vom Werkstück (14) reflektierten ersten Rücklichtstrahl (40), (c) einem zweiten Interferometer (48) zum Aussenden eines zweiten Lichtstrahls (54) auf das Werkstück (14) und Erfassen einer zweiten Phasen (Φ_2) zwischen dem zweiten Lichtstrahl (54) und einem vom Werkstück (14) reflektierten zweiten Rücklichtstrahl (58), (d) einem dritten Interferometer (62) zum Bilden eines dritten Lichtstrahls (64) von einem Arm (20) zum anderen Arm (22) abseits des Werkstücks (14) und Erfassen einer Kontrollphase (Φ_3) und (e) einer Auswertevorrichtung zum Ermitteln der Dicke des Werkstücks (14) aus Interferometerdaten der Interferometer (26, 48, 62). Erfindungsgemäß ist vorgesehen, dass die Auswertevorrichtung eingerichtet ist zum automatischen Bestimmen einer effektiven Phase (Φ_{eff}) aus den Phasen (Φ_0, Φ_1, Φ_2) und Bestimmen der Dicke (l_0) aus der effektiven Phase (Φ_{eff}).
Beschreibung

[0001] Die Erfindung betrifft eine Dickenmessvorrichtung zur Messung einer Dicke flacher Werkstücke, insbesondere Folien, mit (a) einem ersten Arm und einem zweiten Arm, die einen Zwischenraum zum Einführen des Werkstücks zwischen einander bilden, (b) einem ersten Interferometer zum Aussenden eines ersten Lichtstrahls auf das Werkstück und Erfassen einer ersten Phasen (Φ_o) zwischen dem ersten Lichtstrahl und einem vom Werkstück reflektierten ersten Rücklichtstrahl, (c) einem zweiten Interferometer zum Aussenden eines zweiten Lichtstrahls auf das Werkstück und Erfassen einer zweiten Phasen (Φ_i) zwischen dem zweiten Lichtstrahl und einem vom Werkstück reflektierten zweiten Rücklichtstrahl, (d) einem dritten Interferometer zum Bilden eines dritten Lichtstrahls von einem Arm zum anderen Arm abseits des Werkstücks und Erfassen einer Kontroll-Phasen (Φ_k) und (e) einer Auswertevorrichtung zum Ermitteln einer Dicke des Werkstücks aus Interferometerdaten der Interferometer. Gemäß einem zweiten Aspekt betrifft die Erfindung ein Verfahren zum Messen einer Dicke flacher Werkstücke.

[0002] Die Bestimmung der Dicke beispielsweise von Metallfolien ist insbesondere bei der Messung von dünnen Folien, die beispielsweise für die Herstellung von Kondensatoren oder Akkumulatoren verwendet werden, mit besonders hoher Messgenauigkeit erforderlich.

[0004] Der Erfindung liegt die Aufgabe zugrunde, Nachteile im Stand der Technik zu vermindern.

[0005] Die Erfindung löst das Problem durch eine gattungsgemäße Dickenmessvorrichtung, bei der die Auswertevorrichtung eingerichtet ist zum automatischen Bestimmen einer effektiven Phase aus der ersten Phase, der zweiten Phase und der Kontrollphase und zum Bestimmen der Dicke aus der effektiven Phase.

[0006] Gemäß einem zweiten Aspekt löst die Erfindung das Problem durch ein Verfahren zum Messen einer Dicke flacher Werkstücke, insbesondere Folien, mit den Schritten: (i) Einführen des Werkstücks in einen Zwischenraum einer Dickenmessvorrichtung mit (a) einem ersten Arm und einem zweiten Arm, die den Zwischenraum zwischen einander bilden, (b) einem ersten Interferometer zum Aussenden eines ersten Lichtstrahls auf das Werkstück und Erfassen einer ersten Phasen Φ_o zwischen dem ersten Lichtstrahl und einem vom Werkstück reflektierten ersten Rücklichtstrahl, (c) einem zweiten Interferometer zum Aussenden eines zweiten Lichtstrahls auf das Werkstück und Erfassen einer zweiten Phasen Φ_i zwischen dem zweiten Lichtstrahl und einem vom Werkstück reflektierten zweiten Rücklichtstrahl und (d) einem dritten Interferometer zum Bilden eines dritten Lichtstrahls von einem Arm zum anderen Arm abseits des Werkstücks und Erfassen einer Kontroll-Phasen Φ_k (ii) Bestimmen einer effektiven Phase Φ_{eff} aus den Phasen Φ_o, Φ_i, Φ_k und (iii) Bestimmen der Dicke I_k aus der effektiven Phase Φ_{eff}.

[0016] Besonders günstig ist es, wenn die Lichtquelle ausgebildet ist zum Abgeben von Licht einer dritten Wellenlänge, die so gewählt ist, dass eine zweite synthetische Wellenlänge, die größer ist als die erste synthetische Wellenlänge, höchstens 200 µm, vorzugsweise höchstens 100 µm, beträgt. Das hat den Vorteil, dass bei hinreichend genauer Kenntnis des Intervalls, in dem das Messergebnis liegen muss, eine absolute Messung möglich ist.

[0017] Es ist vorteilhaft, wenn das erste Interferometer und das zweite Interferometer die gleiche eigene Lichtquelle haben. Besonders günstig ist es, wenn die Interferometer gemeinsam genau eine Lichtquelle haben.

[0019] Besonders günstig ist es jedoch, wenn kein Absolut-Dickegeber vorhanden und/oder verwendet wird. Das ist dann möglich, wenn die größte verwendete synthetische Wellenlänge doppelt so groß ist wie die Dicke des Werkstückes und/oder einer Dickenschwankungen des Werkstückes.

dem die Temperatur zumindest einer der Arme und/oder der Traverse gemessen werden kann. Verlässt die so gemessene Temperatur ein vorgegebenes Soll-Temperaturintervall, so kann ein Alarm ausgegeben werden. Alternativ oder zusätzlich kann das Messergebnis anhand des Temperaturmesswerts korrigiert werden.

[0024] Unter dem Merkmal, dass der erste Lichtstrahl und der zweite Lichtstrahl antiparallel zueinander verlaufen, wird insbesondere verstanden, dass die aufeinander zu verlaufen. Die erste Gerade bildet mit der zweiten Gerade vorzugsweise einen Winkel von höchstens 0,2 °, besonders bevorzugt höchstens 0,1 °.

[0025] Eine bevorzugte Ausführungsform der Dickenmessvorrichtung besitzt eine Blasvorrichtung zum kontinuierlichen Blasen von sauberer Luft oder auch Stickstoff in den Zwischenraum, wobei die Blasvorrichtung eine Temperatur-Konstanthaltevorrichtung aufweist, mittels der die Temperatur der ausgelassenen Luft in einem vorgegebenen Temperaturintervall gehalten wird, wobei eine Intervallbreite dieses Temperaturintervalls höchstens 1 Kelvin beträgt.

[0026] Erfindungsgemäß ist zudem ein Walzwerk zum Herstellen einer Metalloffie, das eine Walzvorrichtung zum Walzen der Metalloffie und eine erfindungsgemäße Dickenmessvorrichtung aufweist, wobei das Walzwerk vorzugsweise eine Bearbeitungsvorrichtung aufweist. Die Dickenmessvorrichtung ist in Materialflussrichtung hinter der Walzvorrichtung angeordnet.

[0029] Vorzugsweise besitzt das Walzwerk eine Regelung, die mit der Dickenmessvorrichtung und der Walzvorrichtung verbunden ist und eingerichtet ist zum automatischen Einstellen einer Walzkraft anhand der von
der Dickenmessvorrichtung gemessenen Dicke, sodass sich die Dicke des Werkstücks einer vorgegebenen Soll-Dicke annähert.

[0030] Im Folgenden wird die Erfindung anhand der beigefügten Figuren näher erläutert. Dabei zeigt
 Fig. 1 eine schematische Ansicht eines erfindungsgemäßen Walzwerks,
 Fig. 2 einen Querschnitt durch eine erfindungsgemäße Dickenmessvorrichtung und
 Fig. 3 eine schematische Darstellung des Vorgehens beim Berechnen der Dicke aus den Phasenmesswerten.

[0031] Fig. 1 zeigt schematisch ein erfindungsgemäßes Walzwerk 10 mit einer Walzvorrichtung 12 zum Walzen einer Metallfolie 14. In einer Materialflussrichtung M hinter der Walzvorrichtung 12 ist eine erfindungsgemäße Dickenmessvorrichtung 16 angeordnet. Wiederum in Materialflussrichtung M hinter der Dickenmessvorrichtung 16 befindet sich eine Bearbeitungsvorrichtung 18, beispielsweise eine Beschichtungsvorrichtung oder eine weitere Walzvorrichtung.

[0032] Fig. 1 zeigt, dass die Dickenmessvorrichtung 16 einen ersten Arm 20 und einen zweiten Arm 22 aufweist, die mittels einer Traverse 23 verbunden sind und zwischen denen ein Zwischenraum 24 ausgebildet ist.

[0033] Fig. 2 zeigt die Dickenmessvorrichtung 16 in einem Querschnitt. Die Dickenmessvorrichtung 16 umfasst ein erstes Interferometer 26, das eine Lichtquelle 28 besitzt. Das erste Interferometer 26 umfasst zudem einen ersten Strahlteiler 30 zum Abteilen eines ersten Lichtstrahls 34 aus dem Quell-Lichtstrahl 32. Hinter dem ersten Strahlteiler verläuft der erste Lichtstrahls 34 als erster Referenz-Lichtstrahl 36.

[0036] Die Dickenmessvorrichtung 16 besitzt zudem ein drittes Interferometer 62 zum Bilde eines dritten Lichtstrahls 64 vom ersten Arm 20 zum zweiten Arm 22. Das dritte Interferometer 62 weist einen dritten Strahlteiler 66 auf, der einen dritten Quell-Lichtstrahl 68 in den dritten Lichtstrahl 64 und einen dritten Referenz-Lichtstrahl 72 teilt. Der dritte Lichtstrahl 64 tritt durch ein Fenster 71.1 in den Zwischenraum 24 ein und durch ein Fenster 71.2 aus. Das auf dem Strahlteiler 66 entstehende Interferenzmuster aus dem dritten Referenz-Lichtstrahl 68 und einem dritten Rücklichtstrahl 70, der nach Reflexion des dritten Lichtstrahls 64 an einem Retroreflektor 46.3 entsteht, wird mittels eines dritten Detektors 73 erfasst.

[0037] Im vorliegenden Fall teilen sich alle Interferometer 26, 48, 62 die gleiche Lichtquelle 28, aus deren Strahl mittels zweier Strahlteiler 74.1, 74.2 die jeweiligen Quell-Lichtstrahlen 32, 52, 68 erzeugt werden.

[0038] Die in Fig. 2 gezeigten optischen Komponenten können auf einer Basis 75 montiert sein, beispielsweise einer Granitplatte. Es ist aber auch möglich, dass die Lichtquelle 28 - wie in Fig. 1 gezeigt - nicht auf der Basis 75 montiert ist. Die Lichtquelle 28 ist dann - im vorliegenden Fall - mittels einer Glasfaserleitung 76 mit einem Anschluss 78 verbunden sein, mittels dem das Licht aus der Glasfaserleitung 76 in die Strahlengänge eingekoppelt wird.

[0039] Die Lichtquelle 28 gibt kohärentes Licht mit einer ersten Wellenlänge λ_1, λ_2 und einer dritten Wellenlänge λ_3, ab. Das erste Interferometer 26 misst eine erste Phase Φ_1, das zweite Interferometer 48 eine zweite Phase Φ_2. Das dritte Interferometer 62 misst eine dritte Phase Φ_3.5/16
[0040] Nicht eingezeichnet ist, dass die Dickenmessvorrichtung 16 ein Gehäuse aufweist, das die Basis 75 umbaut. Der erste Lichtstrahl 34 kann maximal eine erste freie Wegstrecke \(l_{\text{mess},1} \) außerhalb der Dickenmessvorrichtung 16 zurücklegen, nämlich durch den Zwischenraum 24. Der zweite Lichtstrahl 54 kann maximal eine zweite freie Wegstrecke \(l_{\text{mess},2} \) außerhalb der Dickenmessvorrichtung 16 zurücklegen, wobei im vorliegenden Fall die zweite freie Wegstrecke \(l_{\text{mess},2} \) der ersten freien Wegstrecke \(l_{\text{mess},1} \) entspricht.

[0042] Zur Auswertung der Messergebnisse wird die 2f/3f Detektionsverfahren ermöglicht eine parallele Detektion mehrerer Interferometersignale mit jeweils einem einigen Detektor 42, 60 bei verschiedenen Trägerfrequenzen \(2\omega_{m} \) und \(3\omega_{m} \). Das Verfahren ist wohl bekannt und beispielsweise in Meiners-Hagen et al., Meas. Sci. Techn. 15, 741 (2004) beschrieben.

[0043] Die Lichtquelle 28 umfasst in der vorliegenden Ausführungsform für jede verwendete Wellenlänge eine Laserdiode. Am Arbeitspunkt jeder dieser Laserdiode wird der Betriebsstrom mit der Frequenz \(\omega_{m} \) moduliert. Dies modifiziert sowohl die Intensität \(I \) als auch die Frequenz \(v \) des emittierten Laserstrahls: \(v = v_{0} + \Delta v \times \sin (\phi_{t}, t) \), wobei \(t \) der Zeit und \(\Delta v \) dem induzierten Frequenzhub entspricht. Vernachlässigt man die Intensitätsmodulation, so lässt man an einem Detektor das Signal

\[
I = I_{0} \left[1 + \cos \left(4\pi \frac{1}{c} \left(v_{0} + \Delta v \sin (\phi_{t}, t) \right) \right) \right] = I_{0} \left[1 + \cos \left(\phi_{b} + \Delta \Phi \sin (\sigma_{m}, t) \right) \right]
\]

wobei \(I \) dem Gangunterschied der beiden Interferometerarme, \(c \) der Lichtgeschwindigkeit, \(\Phi_{0} \) der zu messenden Interferometerphase und \(\Delta \Phi = 4\pi \Delta v / c \) der Amplitude \(c \) der Phasenmodulation entspricht. Das Intensitätsignal (1) kann in Besselfunktionen \(J_{n}(x) \) entwickelt werden:

\[
I = I_{0} \left[1 + J_{0}(\Delta \Phi) \cos(\phi_{b}) - 2J_{1}(\Delta \Phi) \sin(\sigma_{m}, t) \sin(\phi_{b})
+ 2J_{2}(\Delta \Phi) \cos(2\sigma_{m}, t) \cos(\phi_{b}) - 2J_{3}(\Delta \Phi) \sin(3\sigma_{m}, t) \sin(\phi_{b}) + \ldots \right]
\]

[0044] Physikalisch bedeutet das, dass die Intensität mit Harmonischen der Modulationsfrequenz \(\omega_{m} \) oszilliert. Der Amplitude der \(i \)-ten Harmonischen \(i\omega_{m} \) ist proportional zum Wert der \(i \)-ten Besselfunktion \(J_{i}(\Delta \Phi) \) sowie dem Sinus beziehungsweise Kosinuswert der Interferometerphase \(\Phi_{0} \).

[0045] Die Armlängendifferenz \(l \) und die Frequenzmodulationsamplitude sind so gewählt, dass die Amplitude zweier geeignet gewählter konsekutiver Besselfunktionen gleich groß ist, es also gilt \(J_{i}(\Delta \Phi) = J_{i+1}(\Delta \Phi) \). Nun kann die Amplitudennmodulation durch die Diodenstrommodulation in 0-ter Näheung die Intensität bei der Fundamentalfrequenz \(\omega_{m} \) stören. Bevorzugs wird daher bei \(2\omega_{m} \) und \(3\omega_{m} \) mit phasensensitiver Detektion gemessen, also einer Lock-In Technik, die Amplituden \(l(2\omega_{m}) \) und \(l(3\omega_{m}) \).

[0046] Es gilt dann

\[
\phi_{b} = \arctan \left(\frac{l(3\sigma_{m})}{l(2\sigma_{m})} \right) = \arctan \left(\frac{\sin(\phi_{b})}{\cos(\phi_{b})} \right) = \arctan \left[\tan(\phi_{b}) \right]
\]

[0047] Die experimentell detektierten Amplituden \(l_{\text{rov}}(2\omega_{m}) \) und \(l_{\text{rov}}(3\omega_{m}) \) werden um etwaige Anteile höherer Harmonischer korrigiert. Dies ist mit einer sogenannten Heydemannkorrektur möglich.

[0048] Bei der erfindungsgemäßen Dickenmessvorrichtung 16 emittiert das Lichtquellen 28 Laserstrahlung auf mindestens zwei Wellenlängen, die mit verschiedenen Modulationsfrequenzen \(\omega_{m} \) moduliert werden, sodass deren zweite und dritte Harmonische nicht zusammenfallen. Es ist dann möglich, die Interferenzphasen aller Wellenlängen eines jeden Einzelinterferometers 26, 48, 62 mit einem einigen Detektor zu bestimmen. Die Phasen der einzelnen Wellenlängen werden beispielsweise per Lock-In Empfänger dann von den einzelnen
Trägerfrequenzen demoduliert. Es sei darauf hingewiesen, dass es zudem noch andere Möglichkeiten gibt, die optischen Interferometerphasen zu messen.

[0049] Ein wichtiger Aspekt des erfindungsgemäßen Verfahrens ist, wie aus den drei Interferometern 62 (hier auch mit ko bezeichnet), 26 (hier auch mit o bezeichnet) und 48 (hier auch mit u bezeichnet) mit den jeweils drei Wellenlängen λ_o, λ_u, λ_2 die Dicke l_o des Werkstücks eines Blechs im Endeffekt direkt gemessen wird. Das minimiert den Einfluss von Störfaktoren.

[0050] Die folgende Herleitung gilt für jede Wellenlänge gesondert, auf einen entsprechenden Index wird daher verzichtet. Aus den drei Phasen einer Messung mit einer Wellenlänge λ_i wird der folgenden die effektive Phase Φ_{eff} berechnet:

$$\Phi_{\text{eff}}(i,t) = \left[\Phi_{\text{ko}}(i,t) - \left(\Phi_{\text{o}}(i,t) + \Phi_{\text{u}}(i,t)\right)\right] \mod (2\pi) \quad (4)$$

[0051] Jede Interferometerphase α (mit $\alpha = o, u$ und ko) misst die Differenz aus Mess- und Referenzpfad $l_{\text{Ref},\alpha}$, wobei Teile des Messpfades $l_{\text{Mess},\alpha}$ sich in Luft ($l_{\text{Mess},\alpha}$) und andere sich im C-Rahmen, also innerhalb der Arme 20, 22 und der Traverse 23, befinden ($l_{\text{MessC},\alpha}$). Der Phasen-bestimmende Weglängenunterschied l_{α} eines Interferometers beträgt also

$$l_{\alpha} = 2\left(l_{\text{MessL},\alpha} + l_{\text{MessC},\alpha}\right) - 2l_{\text{Ref},\alpha} \quad (5)$$

für alle Interferometer. Wenn man nun die der effektiven Phase entsprechende effektive Länge l_{eff} bildet, so erhält man

$$l_{\text{eff}} = 2\left(l_{\text{MessL},\alpha} + l_{\text{MessC},\alpha}\right) - 2\left(l_{\text{Ref},\alpha}\right)$$

mit den Totstrecken $l_{\text{Ref},\alpha}$. Der Störgröße l_{Spreiz}, die mangelnde Parallelität des C-Rahmens, also innerhalb der Arme 20, 22 und der Traverse 23, widerspiegelt, und der Messgröße l_{α}.

[0052] Um l_o aus der effektiven Länge zu extrahieren, müssen die anderen Weglängenunterschiede bestimmt werden. Eine nahe liegende Möglichkeit scheint die Verwendung von Normalen mit bekannten kalibrierten Längen l_{kal} und der Messung der dazu gehörigen effektiven Länge $l_{\text{eff,kal}}$. Dann ließe sich Gleichung (6) auswerten und umstellen zu

$$l_{\text{Spreiz}} + 2l_{\text{Ref},\alpha} - 2\left(l_{\text{Ref},\alpha} + l_{\text{Ref,u}}\right) = l_{\text{eff,kal}} - 2l_{\text{Spreiz,kal}} \quad (7)$$

[0053] Dies hat jedoch zwei Anforderungen: Erstens muss die Referenzdicke l_{kal} mit interferometrischer Genauigkeit bekannt sein, da ein interferometrischer Gangunterschied bekannt sein muss. Jede Unsicherheit in dieser Messung findet sich in der Interpretation der danach gemessenen Phase Φ_{eff} wieder. Eine grundlegende unfreundliche Eigenschaft der Mehrwellenlängeninterferometrie ist, dass sich Unsicherheiten in der Beobachtung mit dem Verhältnis synthetischer zu optischer Wellenlänge hochskalieren. Im Fall einer ersten synthetischen Wellenlänge $\lambda_i = 20 \mu m$ und einer ersten Wellenlänge von $\lambda_i = 760 \text{ nm}$ ergibt sich ungefähr ein Faktor 25.

[0054] Zweitens darf das Werkstück selbst eine Rayleigh-Länge des abbildenden Systems des Interferometers nicht überschreiten. Die interferometrische Auswertung geht davon aus, dass beide Oberflächen der Probe (also normalerweise der Folie von einigen Mikrometern Dicke) auf beiden Seiten von parallelen, ungekrumnten Wellenfronten angetastet werden kann. Bereits ab wenigen 100 μm Dicke kann davon nicht mehr ausgegangen werden.

[0055] Derartige Einstellnormale sind aber in der Praxis wenig geeignet / nicht vorhanden. Zwar kann man Endmaße mit sehr hohem Aufwand mit Unsicherheiten von wenigen Nanometern kalibrieren. Standardmäßig erhält man die besten Unsicherheiten aber in der Größenordnung von 100 Nanometern für die kleins-
ten Endmaße. Parallele Endmaße mit einer Dicke $l_k \leq 0.1$ mm und entsprechend kleiner Messunsicherheit sind nur mit hohem Aufwand und Kosten in der notwendigen Oberflächengüte herstellbar. Zudem ist bei einer Verwendung im Walzwerk auch mit Kondensation von Ölen oder Walzemulsionen zu rechnen, welche die Di-
cke durchaus im Bereich von einigen Nanometern verändern kann, womit die notwendige Maßhaltigkeit als Einstellnormal nicht mehr gegeben wäre..

[0056] Gemäß einer bevorzugten Ausführungsform der Erfindung wird daher ausgenutzt, dass der erste Licht-
strahl 34 (auch Lichtstrahl o genannt) und der zweite Lichtstrahl 54 (auch Lichtstrahl u genannt) antiparallel und kollinear verlaufen. Dabei interferiert der zweite Lichtstrahl 54 des zweiten Interferometers 48 (auch Interfero-
meter u genannt) mit dem ersten Referenz-Lichtstrahl 36 des ersten Interferometers 26 (auch Interferometer o genannt) und vice versa im jeweiligen Strahlteilern 30, 50, vor dem jeweiligen Detektor 42, 60.

[0057] Die Interferometer 26, 48 beginnen jedoch schon früher, mit der Strahlaufteilung in unteren und oberen
Zweig, nämlich im Strahlteiler 74.2 (siehe Fig. 2). Dies führt zu zusätzlichen Wegen l_{T_o} und l_{T_u}. Damit ergeben sich für die Signale in den o und u Detektoren:

$$l_o = l_{T_o} + l_{MessC,o} + l_{MessL,ko} + l_{spreiz} + l_{MessC,u} - (l_{T_u} + 2l_{Ref,u})$$ \hspace{1cm} (8)

$$l_u = l_{T_u} + l_{MessC,u} + l_{MessL,ko} + l_{spreiz} + l_{MessC,o} - (l_{T_o} + 2l_{Ref,o})$$ \hspace{1cm} (9)

[0058] Der Kompensationsweglängenunterschied l_{ko} bleibt formal unverändert zu (5). Bildet man nun die ef-
fektive Länge nach Gleichung (4) fallen die zusätzlichen Termen heraus und man erhält:

$$l_{eff} = 2l_{spreiz} + 2l_{T,ko} - 2(l_{T,o} + l_{T,u})$$ \hspace{1cm} (10)

[0059] Die dazugehörige Phase entspricht der in Gleichung (4) definierten effektiven Phase für $t = 0$ (die auch
Offsetphase genannt werden könnte):

$$\phi_{eff} = (\lambda_i, 0) = \left[\phi_k (\lambda_i, 0) - \phi_o (\lambda_i, 0) + \phi_u (\lambda_i, 0) \right] \text{mod}(2\pi)$$ \hspace{1cm} (11)

[0060] Die Messphase Φ_{mess} gemäß der Gleichung

$$\phi_{eff} (\lambda_i, t) = \left[\frac{4\pi}{\lambda_i} (n_{Lufit}(t), n_{Lufit}(t), n_{C}(t), t)) \right] \text{mod}(2\pi)$$ \hspace{1cm} (11a)

ist nun aus der Differenz der effektiven Phase mit Probe und der Offsetphase $\phi_{eff}(\lambda_i, 0)$ definiert. Dies entspricht mit den Gleichungen (10) und (6) der folgenden Länge l_{mess}:

$$2l_{x}(t)$$

$$l_{mess} = 2 \left(l_{T,ko}(t) - (l_{T,o}(t) + l_{T,u}(t)) \right) = \left(l_x(t) + \delta(t) \right)$$

$$- 2 \left(l_{T,ko}(0) - (l_{T,o}(0) + l_{T,u}(0)) \right)$$ \hspace{1cm} (12)

[0061] Dies führt auf die Form der Gleichung (11a), wenn man die in dieser Diskussion verwendeten optischen
Wege als Produkt von Brechzahl und geometrischer Länge betrachtet. Für konstante stabile Verhältnisse he-
ben sich die Störterme auf. Da davon nicht perfekt ausgegangen werden kann, ist es vorteilhaft, den Einfluss
von Störungen konstruktiv zu minimieren.

[0062] Die Berechnung oben ist ohne Modulo-Operation durchgeführt. Die Modulo-Operation ist nicht echt
assoziativ. Eine ausführliche Simulation unter Berücksichtigung der Modulo-Operation hat jedoch gezeigt, dass
die obige Betrachtung korrekt ist.

[0063] Trotzdem werden natürlich nur Phasen modulo 2π detektiert. Auf die Entfaltung mit makroskopischer
Länge wird im Folgenden genauer eingegangen.
[0064] Bei jeder Messung werden für die drei optischen Wellenlängen \(\lambda_i \) (i=1,2,3) drei Messphasen \(\Phi_{\text{mess},i} \) nach Gleichung (12) dieser Betrachtung bzw. nach der Gleichung

\[
\Phi_{\text{mess}}(\lambda_i, \ell) = \left[\Phi_{\text{mess}}(\lambda_i, \ell) - \Phi_{\text{eff}}(\lambda_i, 0) \right] \text{mod}(2\pi) \quad (12a)
\]

gebildet. Aus diesen lassen sich sogenannte „synthetische Phasen“ \(\Phi_{\text{synth},i} \) bilden über

\[
\Phi_{\text{synth},i} = \Phi_{\text{mess},i} - \Phi_{\text{mess},k} \quad (13)
\]

mit \(i \neq k \). Diese sind formal äquivalent zu Phasen einer synthetischen Messwellenlänge

\[
N' = \frac{\lambda_i \lambda_k}{|\lambda_i - \lambda_k|} \quad (14)
\]

[0065] Die halbe synthetische Wellenlänge entspricht dem Eindeutigkeitsbereich, den man mit der Kenntnis dieser beiden optischen Phasen erreichen kann. Da Unsicherheiten jedoch mit dem Verhältnis \(\lambda_i / \lambda \) skaliert, kann man diese nicht „unendlich“ groß wählen, sondern wählt eine Folge aus kleiner werdenden synthetischen Wellenlängen (vgl. Fig. 3).

[0066] Für die Wahl können folgende Kriterien einfließen:

1. Eine Maßhaltigkeit von 0,1 \(\mu \)m für Metallfolien der Dicke von typischerweise 5 - 30 \(\mu \)m benötigt.
2. Eine Phasenauflösung der optischen Phasen von \(\pi/50 \) ist erreichbar.
3. Es müssen geeignete Laserdioden verfügbar sein.
4. Integriert man in das Banddickenmessgerät zusätzlich einen anderen Dickensensor wie zum Beispiel einen Triangulationssensor, so kann man auf einen Startwert \(l_{\text{vor}} \) zurückgreifen.

[0067] Gut geeignet sind z. B. die drei optischen Wellenlängen von \(\lambda_1 = 761 \text{ nm} \), \(\lambda_2 = 767 \text{ nm} \) und \(\lambda_3 = 785 \text{ nm} \). Damit ergibt sich eine erste synthetische Wellenlänge von \(\Lambda_1 = 100 \text{ \(\mu \)m} \) und \(\Lambda_2 = 25 \text{ \(\mu \)m} \), was Eindeutigkeitsbereichen von 50 \(\mu \)m und 12,5 \(\mu \)m entspricht. Die erfindungsgemäße Dickenmessvorrichtung kann damit die Dicke \(l_x \) von Folien zwischen 5-30 \(\mu \)m ohne Grob-Dickenmesser 80 messen.

[0068] Damit ein Walzwerk nicht für dickere Bleche den Sensor umbauen muss, ist gemäß einer bevorzugten Ausführungsform jedoch ein Grob-Dickenmesser 80 vorhanden, insbesondere ein Triangulationssensor, mittels dem die Dicke \(l_x \) so genau bestimmen kann, dass der Wellenzug der größten synthetischen Wellenlänge bestimmt werden kann. Mit dem in Fig. 2 gezeigten Vorgehen wird dann die Dicke \(l_x \) präzise bestimmt. Wird ein Triangulationssensor mit einer Unsicherheit von maximal 4 \(\mu \)m verwendet, kann schon die die erste synthetische Wellenlänge vorzugsweise 25 ± 5 \(\mu \)m genügen, um Sub-Mikrometer Genauigkeiten zu erreichen.

Mathematisch funktioniert die Entfaltung folgendermaßen

[0070] Fig. 3 zeigt die Bestimmung der Dicke \(l_x \) mit hoher Genauigkeit. Es gibt liegt ein Startwert \(l_{\text{vor}} = l_1 \) für die absolute Dicke vor. Dieser kann beispielsweise aus der synthetischen Wellenlänge, dem Grob-Dickenmesser 80 oder durch Kenntnis des Walzprozesses bekannt sein und hat eine Unsicherheit die besser ist als \(\Lambda_2 / 4 \), wobei \(\Lambda_2 \) der zweiten synthetischen Wellenlänge entspricht. Dann kann die Dicke des Blechs mit der dazu gehörigen synthetischen Phase \(\Phi_{\text{synth},2} \) mit höherer Genauigkeit bestimmt werden über

\[
l_2 = \text{Floor} \left[\frac{2l_1 - \Phi_{\text{synth},2}}{\Lambda_2} + 0,5 \right] \frac{\Lambda_2}{2} + \frac{\Phi_{\text{synth},2}}{2\pi} \frac{\Lambda_2}{2} \quad (15)
\]
Die Funktion \(\text{Floor}(x) \) gibt dabei den kleinsten ganzzahligen Wert \(z \) zurück, für den gilt \(z \leq x \). Hat man eine weitere kürzere synthetische Wellenlänge zur Verfügung kann man diesen Schritt wiederholen. Final wird die optische Wellenlänge entfaltet.

Beispiel

Das Blech habe eine Dicke von \(l_2 = 25,516 \, \mu m \). Der Grob-Dickenmesser 80 liefert einen Vorwert von \(d = 27,1 \, \mu m \). Die Wellenlänge \(\lambda_1 = 761 \, nm \) liefert einen Phasenwert mit begrenzter Genauigkeit von 0,401542, die Wellenlänge \(\lambda_2 = 785 \, nm \) einen (ebenfalls imperfekten) Phasenwert von 0,0360284. Die synthetische Phase \(\Phi_{\text{synth},2} \) beträgt dann 0,365513 zur synthetischen Wellenlänge \(\lambda_2 = 24,981 \, \mu m \). Dann liefert die Auswertung mit Gleichung (15) eine verbesserte Längenabschätzung \(l_2 \) von 25,615 \(\mu m \).

Bezugszeichenliste

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Walzwerk</td>
</tr>
<tr>
<td>12</td>
<td>Walzvorrichtung</td>
</tr>
<tr>
<td>14</td>
<td>Metallfolie</td>
</tr>
<tr>
<td>16</td>
<td>Dickenmessvorrichtung</td>
</tr>
<tr>
<td>18</td>
<td>Bearbeitungsvorrichtung</td>
</tr>
<tr>
<td>20</td>
<td>erster Arm</td>
</tr>
<tr>
<td>22</td>
<td>zweiter Arm</td>
</tr>
<tr>
<td>23</td>
<td>Traverse</td>
</tr>
<tr>
<td>24</td>
<td>Zwischenraum</td>
</tr>
<tr>
<td>26</td>
<td>erstes Interferometer</td>
</tr>
<tr>
<td>28</td>
<td>Lichtquelle</td>
</tr>
<tr>
<td>30</td>
<td>erster Strahlteiler</td>
</tr>
<tr>
<td>32</td>
<td>erster Quell-Lichtstrahl</td>
</tr>
<tr>
<td>34</td>
<td>erster Lichtstrahl</td>
</tr>
<tr>
<td>36</td>
<td>erster Referenz-Lichtstrahl</td>
</tr>
<tr>
<td>38</td>
<td>erstes Fenster</td>
</tr>
<tr>
<td>40</td>
<td>erster Rücklichtstrahl</td>
</tr>
<tr>
<td>42</td>
<td>erster Detektor</td>
</tr>
<tr>
<td>44</td>
<td>Strahlumlenker</td>
</tr>
<tr>
<td>46</td>
<td>Retroreflektoren</td>
</tr>
<tr>
<td>48</td>
<td>zweites Interferometer</td>
</tr>
<tr>
<td>50</td>
<td>zweiter Strahlteiler</td>
</tr>
<tr>
<td>52</td>
<td>zweiter Quell-Lichtstrahl</td>
</tr>
<tr>
<td>54</td>
<td>zweiter Lichtstrahl</td>
</tr>
<tr>
<td>55</td>
<td>Fenster</td>
</tr>
<tr>
<td>56</td>
<td>zweiter Referenz-Lichtstrahl</td>
</tr>
<tr>
<td>58</td>
<td>zweiter Rücklichtstrahl</td>
</tr>
<tr>
<td>60</td>
<td>zweiter Detektor</td>
</tr>
<tr>
<td>62</td>
<td>drittes Interferometer</td>
</tr>
<tr>
<td>64</td>
<td>dritter Lichtstrahl</td>
</tr>
<tr>
<td>66</td>
<td>dritter Strahlteiler</td>
</tr>
<tr>
<td>68</td>
<td>dritter Quell-Lichtstrahl</td>
</tr>
<tr>
<td>70</td>
<td>dritter Lichtstrahl</td>
</tr>
<tr>
<td>71</td>
<td>Fenster</td>
</tr>
<tr>
<td>72</td>
<td>dritter Referenz-Lichtstrahl</td>
</tr>
<tr>
<td>73</td>
<td>dritter Detektor</td>
</tr>
<tr>
<td>74</td>
<td>Strahlteiler</td>
</tr>
<tr>
<td>75</td>
<td>Basis</td>
</tr>
<tr>
<td>76</td>
<td>Glasfaserleitung</td>
</tr>
<tr>
<td>78</td>
<td>Anschluss</td>
</tr>
<tr>
<td>80</td>
<td>Grob-Dickenmesser</td>
</tr>
<tr>
<td>(\Phi_o)</td>
<td>erste Phase</td>
</tr>
<tr>
<td>(\Phi_u)</td>
<td>zweite Phase</td>
</tr>
<tr>
<td>(\Phi_{so})</td>
<td>dritte Phase</td>
</tr>
<tr>
<td>(\Phi_{eff})</td>
<td>effektive Phase</td>
</tr>
<tr>
<td>(I_x)</td>
<td>Dicke</td>
</tr>
<tr>
<td>M</td>
<td>Materialflussrichtung</td>
</tr>
</tbody>
</table>
ZITATE ENTHALTEN IN DER BESCHREIBUNG

Zitierte Patentliteratur

- DE 102013017289 B4 [0003]

Zitierte Nicht-Patentliteratur

Patentansprüche

1. Dickenmessvorrichtung (16) zur Messung einer dicke flacher Werkstücke, insbesondere Folien (14), mit (a) einem ersten Arm (20) und einem zweiten Arm (22), die einen Zwischenraum (24) zum Einführen des Werkstücks zwischen einander bilden, (b) einem ersten Interferometer (26) zum - Aussenden eines ersten Lichtstrahls (34) auf das Werkstück (14) und - Erfassen einer ersten Phase (Φ₁) zwischen dem ersten Lichtstrahl (34) und einem vom Werkstück (14) reflektierten ersten Rücklichtstrahl (40), (c) einem zweiten Interferometer (48) zum - Aussenden eines zweiten Lichtstrahls (54) auf das Werkstück (14) und - Erfassen einer zweiten Phasen (Φ₂) zwischen dem zweiten Lichtstrahl (54) und einem vom Werkstück (14) reflektierten zweiten Rücklichtstrahl (58), (d) einem dritten Interferometer (62) zum - Bilden eines dritten Lichtstrahls (64) von einem Arm (20) zum anderen Arm (22) abseits des Werkstücks (14) und - Erfassen einer Kontroll-Phase (Φ₃) und (e) einer Auswertvorrichtung zum Ermitteln der Dicke des Werkstücks (14) aus Interferometerdaten der Interferometer (26,48,62), dadurch gekennzeichnet, dass (f) die Auswertvorrichtung eingerichtet ist zum automatischen - Bestimmen einer effektiven Phase (Φₑff) aus den Phasen (Φ₁, Φ₂, Φ₃) und - Bestimmen der Dicke (lₑ) aus der effektiven Phase (Φₑff).

2. Dickenmessvorrichtung (16) nach Anspruch 1, dadurch gekennzeichnet, dass (a) das erste Interferometer (26) und das zweite Interferometer (48) eine Lichtquelle (28) aufweisen, die ausgebildet ist zum Abgeben von Licht einer ersten Wellenlänge (λ₁) und von Licht zumindest einer zweiten Wellenlänge (λ₂) und dass (b) für die Wellenlängen (λ₁, λ₂) gilt, dass eine erste synthetische Wellenlänge (λₛ₁ = (λ₁ ⋅ λ₂) / (λ₂ - λ₁)) zwischen 1 und 50 Mikrometer beträgt.

3. Dickenmessvorrichtung (16) nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtquelle (28) ausgebildet ist zum Abgeben von Licht einer dritten Wellenlänge (λ₃), die so gewählt ist, dass eine zweite synthetische Wellenlänge (λₛ₂ = (λ₁ ⋅ λ₃) / (λ₃ - λ₁)) größer ist als die erste synthetischen Wellenlänge (λₛ₁) und höchstens 200 Mikrometer beträgt.

4. Dickenmessvorrichtung (16) nach einem der vorstehenden Ansprüche, gekennzeichnet durch (a) einen Absolut-Dickenmesser zum Bestimmen eines Grob-Dickenmesswerts der absoluten Dicke des Werkstücks (14), (b) wobei die Auswertvorrichtung eingerichtet ist zum automatischen Bestimmen der Dicke des Werkstücks (14) aus dem Grob-Dickenmesswert und der effektiven Phase (Φₑff).

5. Dickenmessvorrichtung (16) nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine thermische Isolation der Arme (20,22) und einer die Arme verbindenden Traverse (23).

6. Dickenmessvorrichtung (16) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass (a) der dritte Lichtstrahl (64) eine Korrekturstreckenlänge (lₑff) außerhalb der Dickenmessvorrichtung (16) zurücklegt und (b) eine freie erste Wegstrecke (lₑff,1), die der erste Lichtstrahl (34) maximal außerhalb der Dickenmessvorrichtung (16) zurücklegen kann, zwischen dem 0,85-fachen und dem 1,15-fachen der Korrekturstreckenlänge (lₑff) beträgt, und/oder (c) eine freie zweite Wegstrecke (lₑff,2), die der zweite Lichtstrahl (54) maximal außerhalb der Dickenmessvorrichtung (16) zurücklegen kann, zwischen dem 0,85-fachen und dem 1,15-fachen der Korrekturstreckenlänge (lₑff) beträgt.

7. Dickenmessvorrichtung (16) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der erste Lichtstrahl (34) und der zweite Lichtstrahl (54) koaxial und antiparallel (aufeinander zu) verlaufen.

8. Walzwerk (10) zum Herstellen einer Metallfolie (14), mit (a) einer Walzvorrichtung (12) zum Walzen der Metallfolie (14) und
(b) einer Dickenmessvorrichtung (16) nach einem der vorstehenden Ansprüche, die in einer Materialflussrichtung (M) hinter der Walzvorrichtung (12) angeordnet ist, und
(c) vorzugsweise einer Bearbeitungsvorrichtung (18), insbesondere einer zweiten Walzvorrichtung (12), die in Materialflussrichtung (M) hinter der Dickenmessvorrichtung (16) angeordnet ist.

9. Verfahren zum Messen einer Dicke flacher Werkstücke, insbesondere Folien, mit den Schritten:
(i) Einführen des Werkstücks (14) in einen Zwischenraum (24) einer Dickenmessvorrichtung (16) mit
(a) einem ersten Arm (20) und einem zweiten Arm (22), die den Zwischenraum (24) zwischen einander bilden,
(b) einem ersten Interferometer (26) zum
- Aussenden eines ersten Lichtstrahls (34) auf das Werkstück (14) und
- Erfassen einer ersten Phase \(\Phi_o \) zwischen dem ersten Lichtstrahl (34) und einem vom Werkstück (14) reflektierten ersten Rücklichtstrahl (40),
(c) einem zweiten Interferometer (48) zum
- Aussenden eines zweiten Lichtstrahls (54) auf das Werkstück (14) und
- Erfassen einer zweiten Phase \(\Phi_u \) zwischen dem zweiten Lichtstrahl (56) und einem vom Werkstück (14) reflektierten zweiten Rücklichtstrahl (58) und
(d) einem dritten Interferometer (62) zum
- Bilden eines dritten Lichtstrahls (64) von einem Arm (20) zum anderen Arm (22) abseits des Werkstücks (14) und
- Erfassen einer Kontroll-Phase \(\Phi_{ko} \).
(ii) Bestimmen einer effektiven Phase \(\Phi_{eff} \) aus den Phasen \(\Phi_o, \Phi_u, \Phi_{ko} \) und
(iii) Bestimmen der Dicke \(l_x \) aus der effektiven Phase \(\Phi_{eff} \).

10. Verfahren nach Anspruch 9,

gemäßzeichnet durch die Schritte:
(i) Interferieren-Lassen des ersten Lichtstrahls (34) und des zweiten Lichtstrahls (54), ohne dass ein Werkstück (14) einen der Lichtstrahlen (34,54) reflektiert, sodass eine effektive Null-Phase \(\Phi_{eff,0} \) erhalten wird,
(ii) Einbringen des Werkstücks (14) in den Zwischenraum (24), sodass die Lichtstrahlen (34,54) vom Werkstück (14) reflektiert werden,
(iii) Messen der effektiven Phase \(\Phi_{eff} \),
(iv) Ermitteln einer Mess-Phase \(\Phi_{eff} \) aus der effektiven Phase \(\Phi_{eff} \) und der Null-Phase \(\Phi_{eff,0} \) und
(v) Berechnen der Dicke \(l_x \) aus der Mess-Phase \(\Phi_{eff} \).

Es folgen 2 Seiten Zeichnungen.
Fig. 3