
(54) Bezeichnung: Flüssigkeitsmengenreferenzapparatur, Mischvorrichtung und Verfahren zum Erzeugen eines Flüssigkeitsstroms definierter Stärke

(57) Hauptanspruch: Flüssigkeitsmengenreferenzapparatur mit
(a) einem Vordruckbehälter (12) für eine Flüssigkeit,
(b) einer Kavitationsdüsenkaskade (14) mit
– einer ersten Kavitationsdüse (16.1), die beim Einstellen eines Druckverhältnisses (r) aus einem Vordruck (p_{1a}) und einem Hinterdruck (p_{2a}) abströmseitig hinter der ersten Kavitationsdüse (16.1), das überhalb von 2 liegt, einen ersten Durchfluss (q_{1}) hat, und
– zumindest einer zweiten Kavitationsdüse (16.2), die beim Einstellen dieses Druckverhältnisses einen vom ersten Durchfluss (q_{1}) verschiedenen zweiten Durchfluss (q_{2}) hat, und
(c) einer Sammelleitung (22) zum Sammeln von aus den Kavitationsdusen (16.1, 16.2) austretender Flüssigkeit.
Beschreibung

[0004] Bislang existieren keine Apparaturen zum Erzeugen eines definierten Flüssigkeitsstroms. Die vorhandenen Normalmessenrichtungen sind vordergründig zum Messen da, wozu sie in der Regel definierte und konstante Flüssigkeitsströme benötigen. Wünschenswert ist eine Referenzapparatur, die nicht mit, sondern nur einen Flüssigkeitsstrom erzeugt, der aber so genau definiert und konstant ist, dass er nicht mehr gemessen werden muss.

[0008] Der Erfindung liegt die Aufgabe zugrunde, Flüssigkeitsströmungen bekannter Stärke auf einfache Weise mit hoher Genauigkeit herzustellen.

[0012] Unter einer Flüssigkeitsmenge wird insbesondere eine Durchflussmenge, die in Volumen oder Masse, pro Zeiteinheit, Masse oder Stoffmenge angegeben werden kann, oder eine Flüssigkeitsmenge, die in Form eines Volumens, einer Masse, eines Gewichts oder einer Stoffmenge angegeben wer-
den kann, verstanden. Bei der Flüssigkeitsmengenrefenzapparatur handelt es sich insbesondere um eine Durchflussmaßverkörperung, die einen Durchfluss als Volumenstrom in Volumen pro Zeiteinheit verkörpert.

[0013] Unter einer Kavitationsdüse wird insbesondere eine Vorrichtung verstanden, die ausgebildet ist, um von Flüssigkeit in einer vorgegebenen Strömungsrichtung durchströmtd zu werden, wobei der Druck der Flüssigkeit in der Kavitationsdüse mit zunehmender Entfernung entlang der Strömungsrichtung zumindest abschnittweise so stark abnimmt, dass der Dampfdruck der sie durchströmenden Flüssigkeit unterschritten wird, so dass sich Kavitationsblasen bilden.

[0017] Besonders günstig ist es, wenn die Kavitationsdüsen so ausgebildet sind, dass deren Durchflussse eine geometrische Reihe bilden, wobei das Verhältnis der Durchflüsse zumindest annähernd 2 beträgt. Hierunter ist zu verstehen, dass ein Verhältnis von genau 2 wünschenswert ist, dass aber auch Abweichungen von beispielsweise 20% zum in dieser Hinsicht gewünschten Wert tolerierbar sind.

[0021] Gemäß einer bevorzugten Ausführungsform weist die Flüssigkeitsmengenreferredenzapparatur eine Überbrückungsleistung, eine erste Ventileinrichtung zum alternativen Leiten eines ersten Flüssigkeitsstroms abströmseitig hinter der ersten Kavitationsdüse in die Sammelleitung oder in die Überbrückungsleitung und zumindest eine zweite Ventileinrichtung zum alternativen Leiten eines zweiten Flüssigkeitsstroms abströmseitig hinter der zweiten Kavitationsdüse in die Sammelleitung oder die Überbrückungsleitung auf. Das führt dazu, dass jede Kavitationsdüse stets von Flüssigkeit durchströmtd wird. Das wiederum führt dazu, dass der Druck, der in Strömungsrichtung vor der Kavitationsdüsenkaskade anliegt, durch das Zu- oder Abschalten einzelner Kavitationsdüsen unbeeinflusst bleibt. Das erhöht die Stabilität des Durchflusses und die Messgenauigkeit in hohem Maße. Es
ist die der Erfindung zugrunde liegende Erkenntnis, dass der Druck trotz Durchflussänderung am Prüfling absolut konstant bleibt. Dazu gehört auch, dass der Prüfling nach den Düsen, also nah der Referenz/dem Normal, angeordnet ist, was normalerweise nicht üblich ist.

[0022] Gemäß einer bevorzugten Ausführungsform ist jedes Sammelleitungventil doppelt ausgeführt, wobei die beiden zusammengehörenden Ventile in Strömungsrichtung jeweils hintereinander angeordnet sind und der Zwischenraum zwischen beiden mit einem Zugang für eine Kontrolle der Dichtheit zwischen Überbrückungsleitung und Prüfling für den Fall ausgerüstet ist, so dass die zu dieser Sammelleitung gehörenden Kavitationsdüse abgeschaltet ist, wodurch unkontrollierte Leckagen an der Sammelleitung absperren sicher detektiert werden können.

[0026] Vorzugsweise ist die Flüssigkeitsmengenreferenzapparatur mit Wasser gefüllt, beispielsweise mit destilliertem Wasser.

[0030] Erfindungsgemäß ist auch eine Kalibrervorrichtung für ein Flüssigkeitsmengenmessgerät, die eine erfindungsgemäß Flüssigkeitsmengenreferenzapparatur und ein in Strömungsrichtung hinter der Sammelleitung angeordneten Flüssigkeitsmengenmessgerät aufweist. Dieses Flüssigkeitsmengenmessgerät ist ein Prüfling, der anhand der Flüssigkeitsmengenreferenzapparatur kalibriert werden soll.

[0031] Bevorzugt umfasst die Flüssigkeitsmengenreferenzapparatur eine Gasdruckhaltevorrichtung zum Konstanthalten eines Gasdrucks eines Gaspolsters in einer Komponente zuströmseitig vor der zumindest einen Kavitationsdüse, wobei insbesondere das Gaspolster im Vordruckbehälter und/oder in einem Sammelbehälter, der in Strömungsrichtung hinter der Sammelleitung und vor einer Umwälzpumpe angeordnet ist. Das Gaspolster wirkt als Puffer, so dass der Flüssigkeitsdruck der Flüssigkeit vor dem
Eintritt in die Kavitationsdüse(n) auch ohne Hochbeähler leicht konstant gehalten werden kann.

[0032] Vorteilhaft an einer erfindungsgemäßen Mischvorrichtung ist, dass die Flüssigkeitsströme durch die beiden Flüssigkeitsmengenreferenzapparaturen mit hoher Genauigkeit bekannt sind, ist auch das Mischungsverhältnis der entstehenden Flüssigkeitsmischung mit hoher Genauigkeit bekannt und einstellbar. Besonders geeignet ist eine solche Mischeinrichtung für die Herstellung von Mischungen aus mehr als zwei Komponenten und bei der Mischung sehr unterschiedlicher Mengenanteile der zu mischenden Flüssigkeiten.

[0034] Das Verfahren wird bevorzugt so durchgeführt, dass ein Flüssigkeitsstrom, insbesondere ein Wasserstrom, durch das Flüssigkeitsmengenmessgerät höchstens 1 m³ pro Stunde beträgt, insbesondere höchstens 1 Liter pro Stunde.

Patentansprüche

1. Flüssigkeitsmengenreferenzapparatur mit (a) einem Vordruckbehälter (12) für eine Flüssigkeit, (b) einer Kavitationsdüsenkaskade (14) mit
 - einer ersten Kavitationsdüse (16.1), die beim Einstellen eines Druckverhältnisses (r) aus einem Vordruck (p₁₂) strömungseitig vor und einem Hinterdruck (p₂₃₂) abströmseitig hinter der ersten Kavitationsdüse (16.1), das oberhalb von 2 liegt, einen ersten Durchfluss (q₁) hat, und
 - zumindest einer zweiten Kavitationsdüse (16.2), die beim Einstellen dieses Druckverhältnisses einen von ersten Durchfluss (q₁) verschiedenen zweiten Durchfluss (q₂) hat, und
 - (c) einer Sammelleitung (22) zum Sammeln von aus den Kavitationsdüsen (16.1, 16.2) austretender Flüssigkeit.

2. Flüssigkeitsmengenreferenzapparatur nach Anspruch 1, dadurch gekennzeichnet, dass zumindest eine Kavitationsdüse (16) so ausgebildet ist, dass bei einem Druckverhältnis von zumindest 2 der Durchfluss höchstens 1 Kubikmeter pro Stunde beträgt.

3. Flüssigkeitsmengenreferenzapparatur nach einem der vorstehenden Ansprüche 1 oder 2, gekennzeichnet durch
 - eine Überbrückungsleitung,
 - eine erste Ventileinrichtung (20.1) zum alternativen Leiten eines ersten Flüssigkeitsstroms abströmseitig hinter der ersten Kavitationsdüse (16) in die Sammelleitung (22) oder in die Überbrückungsleitung (50) und
 - zumindest eine zweite Ventileinrichtung (20.1) zum alternativen Leiten eines zweiten Flüssigkeitsstroms abströmseitig hinter der zweiten Kavitationsdüse (16) in die Sammelleitung (22) oder die Überbrückungsleitung (50).

5. Flüssigkeitsmengenreferenzapparatur nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Gasdruckhaltevorrichtung zum Konstanthalten eines Gasdrucks eines Gaspolsters (55) in einer Komponente zuströmseitig vor der zumindest einen Kavitationsdüse (16), wobei insbesondere das Gaspolster im Vordruckbehälter (12) und/oder in einem Sammelsbehälter (32), der in Strömungsrichtung hinter der Sammelleitung (22) und vor einer Umwälzpumpe (30) angeordnet ist.

6. Mischvorrichtung zum Mischen einer ersten Flüssigkeit mit einer zweiten Flüssigkeit, gekennzeichnet durch
 - eine erste Flüssigkeitsmengenreferenzapparatur mit mindestens einer Kavitationsdüse, die mit einer ersten Flüssigkeit zuführrvorrichtung für die erste Flüssigkeit verbunden ist,
 - eine zweite Flüssigkeitsmengenreferenzapparatur mit mindestens einer zweiten Kavitationsdüse, die mit einer zweiten Flüssigkeitzuführungsvorrichtung für die zweite Flüssigkeit verbunden ist, und
 - eine abströmseitig hinter den Flüssigkeitsmengenreferenzapparaturen angeordnete Mischeinheit zum Mischen von erster Flüssigkeit aus der ersten Flüssigkeitsmengenreferenzapparatur mit zweiter Flüssigkeit
sigkeit aus der zweiten Flüssigkeitsmengenreferenzapparatur.

7. Verfahren zum Kalibrieren eines Flüssigkeitsmengenmessgeräts (26), mit den Schritten
 (i) Leiten von Flüssigkeit durch zumindest eine Kavitationsdüse (16), so dass Kavitationsblasen entstehen, und einen Flüssigkeitszähler-Prüfling,
 (ii) Messen einer Zeit, während der die Flüssigkeit durch die Kavitationsdüse (16) und das Flüssigkeitsmengenmessgerät (26) strömt, und
 (iii) Ermitteln der durch die Kavitationsdüse (16) geströme Flüssigkeitsmenge aus der Zeit (t).

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass gemäß einem vorgegebenen Programm Kavitationsdüsen einer Kavitationsdüsenkaskade so aktiviert und deaktiviert werden, dass sich unterschiedliche Flüssigkeitsströme einstellen.

Es folgen 2 Seiten Zeichnungen
Durchflussdaten (3 bar, 20 °C, dest. Wasser)

\[\begin{align*}
&d: \quad 100 \text{ mm} \quad 690 \text{ m}^3/\text{h} \\
&d: \quad 10 \text{ mm} \quad 6,9 \text{ m}^3/\text{h} \\
&d: \quad 1 \text{ mm} \quad 69 \text{ l/h} \\
&d: \quad 0,1 \text{ mm} \quad 0,69 \text{ l/h}
\end{align*} \]

Fig. 2

Fig. 3