Copulas for Uncertainty Analysis

Antonio Possolo

Jun 21st, 2010

Outline

- GUM
 - Refractive index
 - Shortcomings

- GUM SUPPLEMENT 1
 - Change-of-Variables Formula
 - Monte Carlo Method

- COPULAS
 - Definition & Illustrations
 - GUM Example H.2

Refractive Index

- Apex angle α, refractive index n, immersed in medium with refractive index m

- Light enters prism at angle ϕ, traverses prism’s body, and exits at angle ψ

- As prism rotates about light’s entrance point, $\delta = 2(\phi + \psi - \alpha)$ decreases, reaches minimum δ_M, then increases

$$n = m \frac{\sin((\alpha + \delta_M)/2)}{\sin(\alpha/2)}$$

Refractive Index — Partial Derivatives

$$\dot{f}_m(m, \phi, \psi, \alpha) = \frac{\sin(\phi + \psi - \alpha/2)}{\sin(\alpha/2)}$$

$$\dot{f}_\phi(m, \phi, \psi, \alpha) = m \frac{\cos(\phi + \psi - \alpha/2)}{\sin(\alpha/2)}$$

$$\dot{f}_\psi(m, \phi, \psi, \alpha) = m \frac{\cos(\phi + \psi - \alpha/2)}{\sin(\alpha/2)}$$

$$\dot{f}_\alpha(m, \phi, \psi, \alpha) = -\frac{m}{2} \left[\frac{\cos(\phi + \psi - \frac{\alpha}{2})}{\sin(\frac{\alpha}{2})} + \frac{\sin(\phi + \psi - \frac{\alpha}{2})}{\sin(\frac{\alpha}{2})\tan(\frac{\alpha}{2})} \right]$$
Streamlining Computation

- Computation of standard uncertainty using GUM’s Taylor approximation is tedious and error-prone, especially when measurement equation is non-linear or involves special functions.
- Employ software capable of computing derivatives:
 - Analytically (for example, Maple)
 - Numerically (for example, R)
 - R is freely available, and its source code is open: http://www.r-project.org/
 - metRology package (LGC / NIST)

GUM Approximation — Shortcomings

- If some first order partial derivatives of \(f \) are zero at values of input quantities, then GUM’s approximation may be faulty:
 - Radiant power \(W = \kappa \cos(A) \)
- GUM’s approximation may be poor when \(f \) is markedly non-linear in neighborhood of values of input quantities:
 - Need to study \(f \)’s curvature is extra burden
 - If curvature is appreciable and influential, need higher-order approximation
 - However, examples can be constructed where first-order approximation is better than second-order approximation — Wang & Iyer (2005)

GUM Approximation — More Shortcomings

- Expanded uncertainties and coverage intervals involve coverage factor whose value depends on generally unverifiable assumption that output quantity has Gaussian or Student’s \(t \) distribution
- Even when \(Y \sim t_\nu \), Welch-Satterthwaite formula often yields inappropriate value for \(\nu \)

Example (GUM H.1)

- \(l = l_S + d - l_S(1 - \delta \alpha \theta - \alpha_S \delta \theta) \)
- Welch-Satterthwaite formula yields \(\nu_{eff} = 16 \)
- GUM’s 99% coverage interval 17% longer than it needs to be

GUM Supplement 1 — Problem

- Given
 - Measurement equation \(Y = f(X_1, \ldots, X_n) \)
 - Joint probability distribution of \(X_1, \ldots, X_n \) (with density \(\varphi \))
- Determine \(Y \)’s probability distribution:
 - Derive \(Y \)’s density analytically
 — Change-of-variables formula
 - Sample \(Y \)’s distribution
Change of Variables Formula

- **Transformation** $\tau = (f, \tau_2, \ldots, \tau_n)$
 - One-to-one, continuously differentiable
 - Inverse has non-vanishing Jacobian

\[
Y = f(X_1, \ldots, X_n) \\
Z_2 = \tau_2(X_1, \ldots, X_n) \\
\ldots \\
Z_n = \tau_n(X_1, \ldots, X_n)
\]

- Y has probability density ψ

\[
\psi(y) = \int_{z_2} \cdots \int_{z_n} \phi(\tau^{-1}(y, z_2, \ldots, z_n)) \\
\quad \quad |J_{\tau^{-1}}(y, z_2, \ldots, z_n)| \, dz_2 \ldots dz_n
\]

GUM Supplement 1 — Step 1

PROPAGATING DISTRIBUTIONS (MONTE CARLO)

- **STEP 1:** Select probability distribution to describe state of knowledge about input quantities
 - If X_1, \ldots, X_n can be regarded as independent random variables, then assign probability distributions to each one of them separately
 - Otherwise, assign multivariate distribution to all of them together **using a copula**
 - In either case, mean and standard deviation of each X_j's distribution should be x_j and $u(x_j)$

GUM Supplement 1 — Steps 2–4

PROPAGATING DISTRIBUTIONS (MONTE CARLO)

- **STEP 2:** Choose suitably large number K for size of sample to generate from probability distribution of output quantity
- **STEP 3:** Simulate K vectors of values of input quantities, and compute $y_k = f(x_{k1}, \ldots, x_{kn})$ for $k = 1, \ldots, K$
- **STEP 4:** Assign to $u(y)$ (standard uncertainty of output quantity) the value of the standard deviation of y_1, \ldots, y_K

GUM Supplement 1 — Refractive Index (CI)

- Use sample $\{y_1, \ldots, y_K\}$ to estimate probability density of prism's refractive index — most complete characterization of uncertainty
- Shaded region includes 95% of total area under curve: footprint on horizontal axis is a coverage interval for measurand with 95% confidence
GUM Example H.2

INPUT QUANTITIES
- Amplitude V of sinusoidally-alternating potential difference across electrical circuit’s terminals
- Amplitude I of alternating current
- Phase-shift angle ϕ of alternating potential difference relative to alternating current
- V, I, and ϕ are correlated

OUTPUT QUANTITIES
- Resistance $R = \frac{V}{I}$ cos ϕ
- Reactance $X = \frac{V}{I}$ sin ϕ
- Impedance’s magnitude $Z = \frac{V}{I}$

Problem & Solutions

PROBLEM
- Given probability distributions for input quantities, and correlations between them, how does one manufacture a joint probability distribution consistent with those margins and correlations?

SOLUTIONS
- There are infinitely many joint distributions that are consistent with given marginal distributions and correlations
- **Copulas** join univariate probability distributions into multivariate distributions and impose dependence structure

Copulas are not Cupolas

Manufacturer mentioned solely to acknowledge image source, with no implied recommendation or endorsement by NIST that cupola portrayed is the best available for any particular purpose.
A copula is the cumulative distribution function of a multivariate distribution on the unit hypercube all of whose margins are uniform.

Clayton copula inducing Kendall’s $\tau = 0.6$.

Sklar’s (1959) Theorem

If H is CDF of multivariate distribution whose margins have CDFs F_1, \ldots, F_n, then there exists copula C such that

$$H(x_1,\ldots,x_n) = C(F_1(x_1),\ldots,F_n(x_n))$$

If F_1, \ldots, F_n are continuous, then C is unique.

$C(p_1,\ldots,p_n) = H(F_1^{-1}(p_1),\ldots,F_n^{-1}(p_n))$

Copula — Example: Definition

Example (Gaussian Copula on Beta Margins)

- $U \sim \text{BETA}(3, 5)$ has CDF F
- $V \sim \text{BETA}(4, 2)$ has CDF G
- $\rho = \text{cor}(U, V) = 0.7$
- Copula C such that

$$C(p, q) = \Phi_p(F^{-1}(p), G^{-1}(q))$$

for $0 \leq p, q \leq 1$
Copula — Example: Joint Density

Influential Copulas

- Joint distributions with same Gaussian margins and same correlation

GUM Example H.2

OUTPUT QUANTITIES

- Resistance $R = \frac{V}{I} \cos \phi$
- Reactance $X = \frac{V}{I} \sin \phi$
- Impedance's magnitude $Z = \frac{V}{I}$

GUM Example H.2 — Data

<table>
<thead>
<tr>
<th>V (V)</th>
<th>I (mA)</th>
<th>ϕ (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.007</td>
<td>19.663</td>
<td>1.0456</td>
</tr>
<tr>
<td>4.994</td>
<td>19.639</td>
<td>1.0438</td>
</tr>
<tr>
<td>5.005</td>
<td>19.640</td>
<td>1.0468</td>
</tr>
<tr>
<td>4.990</td>
<td>19.685</td>
<td>1.0428</td>
</tr>
<tr>
<td>4.999</td>
<td>19.678</td>
<td>1.0433</td>
</tr>
</tbody>
</table>
GUM Example H.2 — Evaluations

- Input quantity values estimated by averages \bar{V}, \bar{I}, and $\bar{\phi}$, of sets of five indications
- Uncertainties and correlations of input quantities assessed by Type A evaluations
 - $u(\bar{V}) = \text{SD}(5.007, 4.994, 5.005, 4.990, 4.999) / \sqrt{5}$
 - Similarly for $u(\bar{I})$ and $u(\bar{\phi})$
 - $\text{cor}(V, I)$, $\text{cor}(V, \phi)$, and $\text{cor}(I, \phi)$ estimated by correlations between paired sets of five indications

GUM Example H.2 — GUM Supplement 1

CHALLENGES

- Quality of estimates of $u(V)$, $u(I)$, $u(\phi)$, $\text{cor}(V, I)$, $\text{cor}(V, \phi)$, and $\text{cor}(I, \phi)$ limited by very small number of indications they are based on
- Marginal distributions must be chosen for V, I and ϕ, and then linked using a copula that reproduces correlations between them

SOLUTION

- Employ Student t_4 distributions for
 \[
 \frac{\bar{V} - \mu_V}{u(\bar{V})}, \quad \frac{\bar{I} - \mu_I}{u(\bar{I})}, \quad \text{and} \quad \frac{\bar{\phi} - \mu_\phi}{u(\bar{\phi})}
 \]
- Tune Gaussian copula using correlation supplicant
- Apply copula
 - To sample correlation matrix
 - To use sampled correlation matrix in turn to sample output quantities
Correlation Supplicant

- Copula parameter θ determines dependence structure, in particular correlation matrix $\rho(\theta)$.

Example

- **STUDENT**: θ comprises ν and Σ.
- **CLAYTON**: $C(\rho, q) = (\rho^{-\theta} + q^{-\theta} - 1)^{-\frac{1}{\theta}}$, $\theta \geq -1$.

Correlation Supplicant selects θ that minimizes difference between ρ and $\rho(\theta)$.

- Minimization with respect to θ done under constraint that $\rho(\theta)$ must be *bona fide* correlation matrix.

GUM Example H.2 — GUM Supplement 1

RESULTS

<table>
<thead>
<tr>
<th>GAUSSIAN COPULA WITH GAUSSIAN MARGINS</th>
<th>R (Ω)</th>
<th>X (Ω)</th>
<th>Z (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE</td>
<td>127.7</td>
<td>219.8</td>
<td>254.3</td>
</tr>
<tr>
<td>u</td>
<td>0.0711</td>
<td>0.296</td>
<td>0.236</td>
</tr>
<tr>
<td>$U_{99%}$</td>
<td>0.18</td>
<td>0.76</td>
<td>0.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAUSSIAN COPULA WITH STUDENT MARGINS</th>
<th>R (Ω)</th>
<th>X (Ω)</th>
<th>Z (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVE</td>
<td>127.7</td>
<td>219.8</td>
<td>254.3</td>
</tr>
<tr>
<td>u</td>
<td>0.0828</td>
<td>0.289</td>
<td>0.232</td>
</tr>
<tr>
<td>$U_{99%}$</td>
<td>0.29</td>
<td>0.93</td>
<td>0.75</td>
</tr>
</tbody>
</table>

GUM Example H.2 — Results

GUM Example H.2 — Limitation

- All usual copulas fail to capture fact that joint distribution of (R, X, Z) is degenerate:

 $$Z^2 = R^2 + X^2$$

- However, this is largely irrelevant in this case because relative standard uncertainties are very small — all less than 0.1%.
Conclusions & Reference

- When input quantities are correlated, and their joint distribution is not determined otherwise, copula must be used to apply Monte Carlo Method of GUM Supplement 1

- Many different copulas can reproduce given correlations, yet lead to possibly very different uncertainty evaluations for output quantity