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THE PROBLEM

An instrument is to be calibrated...

Standards covering the range of the
instrument are chosen...

... and are "measured” with the
instrument




A “calibration function” is constructed...
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When the calibration function is put into practical use...
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... the task is to obtain the posterior (< |y), from which the
“pest estimate” of measurement result x can be derived,
together with the associated standard uncertainty u(x).

Four steps can be distinguished:

1) Obtain a PDF f,(a) of the parameters A

2) Establish the likelihood /(7;y) of the indication y

—

3) Use Bayes’ theorem to derive the posterior f,(7 |y)
4) Use probability calculus to obtain the posterior /(< |y)

We shall assume that steps 1) and 2) have been completed

So only steps 3) and 4) will be adressed in the sequel



Step 3): Use Bayes’ theorem to derive f\(7 |y)

Jr(n]y)ocl(n;y) fy(n)
! N
likelihood  prior
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Use non-informative prior if there is
no information about Y

Selected by formal rules, e.g. those
established by Bernardo and Berger

This type of prior is known as “reference” prior,
and is considered by some as a “golden
standard” in Bayesian analysis



Step 4): use probability calculus to derive £ (S |y)

4.1 Independence between Yand A

fy,A(U»OCW) x fy(m|y)f(a)

4.2 Change of variables

fX,A(S?a | y) fY,A(F(Sﬂa) | y)

4.3 Marginalize

OF (£, a)
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4.4 Normalize

4.5 Compute expectation and variance (if desired)

x=EX|y) v (x)=V(X|y)




GUM Supplement 1 is a numerical method to approximate
the posterior £, (& |y)

S.1 Draw a very large number of samples from f{7n |y) and

fal@)

S.2 Compute the corresponding values & of X by inverting
the calibration function Y=F(X,A)

S.3 The frequency histogram of these values approximates

(S 1Y)

Within numerical accuracy, results should be exactly the
same as the Bayesian approach described previously

Bayesian analysis and GUM
= Supplement 1 are just two faces of the
same coin
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They both
coincide
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So this example corroborates that Bayesian
and GUM S1 are equivalent procedures

Bayesian analysis can be carried out in an
alternative way

Recall step 3

Syl y)ocl(n;y)fy(n)

In this step, the likelihood can be written as
I(n;y)=1(F(&a);y) which prior

to take?
SO fX,A(‘S?a | V) X (F(§,a); ) [y (§) [, (a)
[




Since there is no information about X, take f, (£) o<1
This choice results in the dashed curve
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The problem is that in the likelihood /(F(&,a);y) the
qguantity Xis not a location parameter, so taking a uniform
non-informative prior does not conform to the accepted
rules for constructing a reference prior.

One should transform the uniform prior f,(7n)

into a function of £and «:

) — £ (F& a2t (%00 L |OF éég' @)

and use this prior together with the likelinood expressed as
a function of £and « :

OF (&,a)

fX,A(ﬁ,a|y)o<l(F(§,a);y) Y




By doing so, the results of the alternative approach
coincide with those of the original approach, and so, with
those of the GUM S+

So, in conclusion, there should never be a difference
between a Bayesian analysis and the Monte Carlo method
in Supplement 1...

... provided consistent use is made of non-informative
priors, if needed.

To avoid inconsistencies, these priors should be selected
by formal rules based on the form of the likelihood.






