
Richardson-Lucy bandpass correction

September 27, 2013

This is the documentation of the Python software package version 1.9x for
Richardson-Lucy deconvolution of bandpass data. A list of changes compared to
the last published version (1.8x) can be found in “list of changes.txt”. The most
important changes are a detailed documentation of all relevant Python methods
(see index.html) and the support of the EXCEL Add-In pyXLL (downloadable
from www.pyxll.com) to use the RichLucy methods from within Microsoft EX-
CEL.

Copyright S. Eichstädt, F. Schmähling (PTB) 2013

This software is licensed under a BSD-like license:
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

This software was developed at Physikalisch-Technische Bundesanstalt (PTB).
The software is made available ‘as is’ free of cost. PTB assumes no responsibil-
ity whatsoever for its use by other parties, and makes no guarantees, expressed
or implied, about its quality, reliability, safety, suitability or any other charac-
teristic. In no event will PTB be liable for any direct, indirect or consequential
damage arising in connection with the use of this software.

The algorithm used here is based on Richardson-Lucy deconvolution as de-
scribed in

Eichstaedt S., Schmaehling F., Wuebbeler G., Anhalt K., Buenger L., Krueger
U. & Elster C. Comparison of the Richardson-Lucy method and a classical ap-
proach for spectrometer bandwidth correction Metrologia, vol. 50, 2013

1

1 Software requirements:

• Python 2.7

• matplotlib

• Pyqt4 for the GUI version

For most operating systems these requirements are satisfied by any standard
Python installation.
The software can be used in three different ways: 1. from the command line 2.
using the graphical user interface (GUI) 3. from a Python shell

2 Basic Assumptions

1. It is assumed that the input files contain the data column-wise. The
first column is assumed to contain the wavelength values, the second the
measured values and the third column (if existing) is taken as the standard
uncertainties at the corresponding wavelengths.

2. It is assumed that the wavelength scale is strictly monotonically increasing.

Error messages are thrown when these assumptions are not met.
A conceptual assumption of the Richardson-Lucy method is that the provided
bandpass function fully explains the measured data. That is, any other influ-
ences or pre-processings of the measured spectrum may result in biased results
and under-estimated uncertainties.

3 Command Line Usage

Make sure that the path to the software is in your system search path or copy
the software to the location of the data you would like to process. From the
command line invoke:

• the command
python RichLucy.py [bandpass file][measurement file] [output file]
to process the measured spectrum data in [measurement file] with the
bandpass data in [bandpass file] and store the results in [output file]

• the command
python RichLucy.py [bandpass file][measurement file] [output file][maxiter]
with an integer value [maxiter] denoting the maximum number of Richardson-
Lucy iterations

• the command
python RichLucy.py [bandpass file][measurement file] [output file][maxiter]
[MCruns]

2

to carry out [MCruns] Monte Carlo trials for the evaluation of uncertain-
ties.

Uncertainty evaluation is carried out only when the input [MCruns] is given.
Note that for uncertainty evaluation a value of [maxiter] has to be specified.
If interpolation of the bandpass or the measured spectrum is required, these are
stored in [bandpass file]interp and [measurement file] interp, respectively.
If interpolation of the measured spectrum was necessary, the Richardson-Lucy
iterations are called using the interpolated spectrum and the RichLucy estimate
is transformed back to the original wavelength scale afterwards. Both results
are stored, except when uncertainties are calculated.

4 Using the GUI

For beginners, the GUI version of the software might be the most easiest way
to try out the Richardson-Lucy method. It uses the same functions as the
command line version, but encapsulates loading of data files, setting parameters
and plotting of results in a graphical user interface. The important parts of the
GUI which are required to start playing around are described using tooltips.
Please note:

The GUI uses the command window (either the one from which it

is called or the one that opens when double-clicking

>RichLucyGUI.py< in a file browser). That is, any additional

information and warnings are printed there. Hence, it is strongly

advised to keep an eye on this window to see what the program is

doing and whether there are any problems!

A good start to use the software is as follows:

1. Load a text-file (.txt, .csv, . . .) containing the bandpass values (see Basic
Assumptions)

2. Load a text-file containing the measured spectrum values

3. Hit the ‘Start’ button.

4. Plot the results using the corresponding buttons at the bottom of the
window.

The ‘Continue’ button can be used to take a look at the progress of the Richardson-
Lucy deconvolution:

1. Load the data as above.

2. Enter in ‘max. iterations’ a small number (1 to 10)

3. Uncheck the checkboxes ‘automatic stopping’ and ‘evaluate uncertainties’

3

4. Hit the ‘Start’ button once and then the ‘Continue’ button.

With each click on the ‘Continue’ button the Richardson-Lucy iteration is con-
tinued, starting from the last result of the previous number (=’max. iterations’)
of RichLucy iterations. The progress can then be seen in the bottom figure of
the GUI.

5 Usage from a Python shell

The RichLucy.py module can be imported from any other Python module or
at a Python shell, such as IPhython. After importing the module, the help()
command can be used to obtain the description of the module at the Python
shell. Only basic knowledge of Python programming is required in order to use
these methods. In particular, the user shall be familiar with the Python concept
of arguments and keyword-arguments.
From the module the following methods (in alphabetical order) can be used from
the Python shell or by importing the module from another Python module.

• EstMeas(Shat, b, lambda S, lambda b, display=False)

Calculate the measurement result estimated from an estimated

input spectrum and the bandpass function.

If necessary, the bandpass is interpolated to obtain an

equidistantly sampled sequence. If necessary, the estimated

input spectrum Shat is interpolated to obtain the same step

size as for the bandpass

• Interpolate2Equidist(lamb axis, values, display=True, interp kind=’cubic’,
tol equi=1e–05)

Interpolation of measured values if wavelength scale axis is

not equidistant. Input of this function are the original

measured values and the corresponding wavelength scale.

The output is the interpolated version with the new scale, a

flag whether interpolated or not and a tuple (numNaN,numNeg)

with the number of NaN and negative values after interpolation.

• Interpolate2SameStep(M, lambda M, delta b, display=True, interp kind=’cubic’,
tol equi=1e–05)

Interpolation of measured spectrum if its wavelength step

size is not equal to that of the bandpass function or if

it is not equidistant. The output is the interpolated

version with the new scale, a flag whether interpolated

or not and a tuple (numNaN,numNeg) with the number of NaN

and negative values after interpolation.

4

• LoadFromFile(filename)

Load wavelength scale axis, measured values and uncertainties

from file. Output of this method is the matrix "data".

• RichLucy(b, delta, M, maxiter=500, autostop=1, display=1, optFun=calcOptCurv,
calcCrit=True, returnAll=False, initialShat=None)

Richardson Lucy deconvolution

Output:

Shat estimated spectrum

critVals1 ... result values returned from optFun

critVals2 ... result values returned from optFun

Input variables:

b bandpass function values

delta........ wavelength step size for b and M

M measured spectrum

maxiter maximum number of iterations

autostop..... if equal to 1, use optimal number of iterations

display if larger than zero, provide text output

optFun function to calculate number of iterations

calcCrit if true critVals is returned

returnAll ... if true returns full matrix of intermediate results

initialShat.. estimated spectrum from a previous run of this routine

• RichLucyUncertainty(bhat, b unc, lambda b, Mhat, M unc, lambda M, runs=100,
maxiter=500, autostop=1, display=1, optFun=calcOptCurv, calcCrit=True,
returnAll=False, plotRes=False)

This function carries out uncertainty evaluation for the Richardson-Lucy

deconvolution by using the GUM Supplement 2 Monte Carlo method.

• calcOptCurv(SH, M, btilde, autostop=1, display=False, orig mode=False)

Calculate the root-mean-squared progress in the RichLucy iterations.

Determine the optimal number of iterations from the curvature of the

rms values.

• calcOptDiff(SH, M, bdtilde, autostop=1, display=False)

function to calculate optimal iteration from weighted rms difference of

estimated measurement and actual measured spectrum

5

• demo(bandwidth=40, skew=1, FWHM=10, maxiter=2000)

Demonstrate usage of the Richardson-Lucy method for bandpass correction.

A triangular bandpass of given bandwidth and skewness is used to simulate

a measurement of a Gaussian-shaped spectrum of given FWHM value.

The maximum number of Richardson-Lucy iterations is given by maxiter.

Two different automatic stopping criteria are employed and the results

can be compared.

• sim bandpass(bandwidth, sampledist, skew=1, noise=0, noise low=0)

Generate a triangular bandpass function with given bandwidth

and skewnes (skew) on the wavelength axis [-bandwidth,bandwidth]

Relative measurement noise can be simulated using noise and noise_low

as maximum and minimum relative noise levels.

The output of the method is

hat - the triangular bandpass function

lamb- the wavelength axis

• sim measurement(Sfun, lamb, b, bandwidth, delta b, noise low=0, noise up=0)

Generate a Gaussian-shaped spectrum by simulating a measurement of a

clean Gaussian-shaped function Sfun defined on the wavelength axis lamb

with a triangular bandpass function b of given bandwidth and wavelength

step size delta_b.

Note that Sfun needs to be a function object.

Measurement noise can be simulated using the relative noise levels

noise_low and noise_up

The output of the method is

M - the simulated measured spectrum

6

