

Relevance and application of cartridge meters in the submetering sector

International Workshop on Water and Heat Meters

Lars Leblang, Techem Energy Services GmbH, 2013-10-23

Agenda

Legal & market environment

Application of cartridge meters

Outlook

Legal situation / regulations

Why do we use apartment water meters? Some examples ...

Germany

- Decree on heat cost allocation (1981, revised in 2009)
 - Allocation of heat costs for warm water generation mandatory
- federal state building codes
 - · Obligation for billing of cold water dependent on federal state

Austria

- Act of heat cost billing: warm water meters mandatory
- act of residential and ownership rights
 - · billing of cold water not mandatory; dependent on owner's decision

Switzerland

- Billing of water (cold or warm) not mandatory
 - Regulation dependent on federal state

Market / distribution

Main Markets of cartridge meters are

- Germany
- Austria
- Switzerland
- Netherlands
- Czech Republik
- Italy

In smaller numbers also in

- Poland
- France
- Denmark

History of cartridge meters

A brief view back ...

- Invention of cartridge meters end of 1960's
- transfer of technology / design to heat meters in 1980's
- End of 1980's increase of meters with communication interfaces (radio, M-Bus, reed contact)
- Modern cartridge meters are
 - Mechanical with clip-on communication modules
 - Electronic meters with LCD and integrated communication modules

Facts & figures

Economic relevance in submetering

- installed base in Germany:
 - 25 Mio. apartment water meters installed
 - thereof roughly 2/3 are cartridge meter types
- estimated consumption of water measured by those:
 - 498 Mio. m³ drinking water per year ¹
- monetary equivalent: ²
 - 0.93 Bn. EUR (fresh drinking water costs)
 - 1.76 Bn. EUR (incl. waste water fee)

average accumulated volume per meter: 30m³/a

² Average cost: 1.86€/m³ fresh water, 1.66€/m³ wastewater fee; source: various German utilities, Oct.2013

Application 1/4 - basics

Intention and main characteristics of a cartridge meter

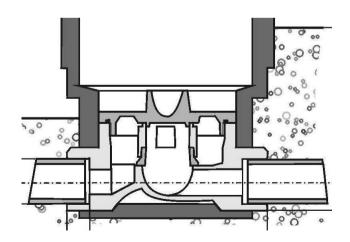
- Retrofitting of metering point for old buildings
- unremarkable and easy to use metering point for new buildings
- Easy to install and to carry out periodic change due to calibration period
 - cartridge meter + connection interface = metering point
- high quality and robust metering point for submetering at reasonable costs

Application 2/4 - on site

On site installation & meters

- Installed meters per apartment:
 - In new buildings typically 2 meters
 - In old buildings very variable due to number of retrofitted metering points
 - Statistically 1.5 meters per appartment¹

- Meter types & size
 - standard meter size in terms of flowrate is Q_n1.5 m³/h (>99%)
 - Multi-jet type 80%, single-jet type 20%


Application 3/4 - connection interfaces I

Connection interfaces according to EN 14154-2:2005+A2:2011

- standard is in-wall type (80...85%)
 - directly connected to supply pipes
 - bathroom, kitchen
 - incl. stop valve or separate
 - mainly in new buildings

Application 4/4 - connection interfaces II

As a retrofitting solution

on-wall [1] and valve connection interfaces [2]

- Bath room, kitchen
- under the sink, angle stop valve, washing machine tube
- mainly in old buildings

[2]

[1]

Metrological characteristics in the field

Ш

PTB technical regulation TR-W19

- Annex D; additional check on-site
- Only very few cases per year
- Not relevant for cartridge meters due to
 - stable measuring characteristics of cartridge meters (see lecture of Dr. Wendt) referring unsuitable pipe installation or fittings
 - original installed connection interface has to be removed and transferred to the calibration site
 - Costs for tenant (typically the person who orders an on-site check)

Outlook 1/2

Marking of connection interfaces

- EN 14154-3 requires marking of connection interfaces
 - To cross-check if marking of the meter is the same
- New connection interfaces have such markings
- interfaces already installed in the field:
 - Basically it is accepted by the market surveillance / PTB to mark the interfaces when installing a MID cartridge meter
 - Results of PTB working group on water meters (PTB VV AA Wasserzähler)
 - The realization "How to mark it in the field" is not decided yet
 - Discussions/fine tuning of realization is ongoing between market participiants (surveillance bodies, manufacturers, submetering companies)

Outlook 2/2

Suitable flow rate for apartment meters

- Inline meters have a variety such as Q_n1.0 / Q_n1.5 / Q_n2.5 m³/h
- Actually > 99% of all cartridge meters have Q_n1.5 m³/h
- with change to MID we expect
 - inline meters to be or already are "transferred" to Q₃1.6 / Q₃2.5 / Q₃4.0 m³/h due to market requirements
 - to have Q₃2.5 as a standard for cartridge meters
 - long term developments could go for Q₃1.6 due to change of installation standards or legal regulation to reduce water consumption
 - expert working group has been set up to evaluate demands for a change (technically, regulatory)

Contact

Contact for further information or questions

Lars Leblang

Techem Energy Services GmbH

Hauptstraße 89

65760 Eschborn

Germany

Phone: +49 (0) 6196 / 522 - 24 05

Mobile: +49 (0) 162 / 21 41 371

Mail to: lars.leblang@techem.de