Logo of the Physikalisch-Technische Bundesanstalt

Virtual experiments

Working group 8.42

Overview

In a virtual experiment a measurement process is modeled mathematically and simulated on a computer. The employed mathematical model of the physical experiment is sought to be as realistic as possible. Virtual experiments allow different scenarios to be easily explored. In this way, measurement processes can be designed and specified with the help of the computer. Virtual experiments can be used to estimate the accuracy that is reached by a real measurement device. Dominant sources of uncertainty can be identified and quantitatively explored by carrying out a sensitivity analysis of the virtual experiment. The results obtained can be used to optimize the considered measurement system. Virtual experiments can help in the development of procedures from data analysis for real experiments, for example to assess and compare different estimation procedures under realistic conditions, or to validate assumptions made about the distribution of measured data.

Simulation of a tilted-wave interferometer (left) and a virtual 3D-measurement of an optical surface (right) using SimOptDevice.

Research

The research of PTB’s Working Group 8.42 focuses on virtual experiments for optical measurement devices and the development of procedures from data analysis for evaluating corresponding measurements. To this end, the simulation environment SimOptDevice has been developed as a software library, which is successfully employed in many applications regarding length-/form- and coordinate measurements, as well as photometry. SimOptDevice is regularly maintained and its functionality improved. It is currently applied to the tilted-wave interferometer, which is suitable for the optical form measurement of aspheres and freeforms. Methods of data analysis in conjunction with virtual experiments are developed and applied to solve the involved inverse problem and to calibrate the measurement process. Other research topics include the evaluation of uncertainties associated with real measurements utilizing the results of the corresponding virtual experiment, or the use of methods from deep learning in connection with virtual experiments. For example, virtual experiments can be used to create a database needed to train a neural network that is designed for analyzing experimental data.

Publications

Publication single view

Article

Title: Evaluation of absolute form measurements using a tilted-wave interferometer
Author(s): I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, W. Osten;C. Elster
Journal: Opt. Express
Year: 2016
Volume: 24
Issue: 4
Pages: 3393--3404
OSA
DOI: 10.1364/OE.24.003393
Web URL: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-4-3393
Keywords: Interferometry; Metrology; Surface measurements, figure; Aspherics
Tags: 8.42,Form,EMRP-Form
Abstract: Tilted-wave interferometry is a promising measurement technique for the highly accurate measurement of aspheres and freeform surfaces. However, the interferometric fringe evaluation of the sub-apertures causes unknown patch offsets, which currently prevent this measurement technique from providing absolute measurements. Simple strategies, such as constructing differences of optical path length differences (OPDs) or ignoring the piston parameter, can diminish the accuracy resulting from the absolute form measurement. Additional information is needed instead; in this paper, the required accuracy of such information is explored in virtual experiments. Our simulation study reveals that, when one absolute OPD is known within a range of 500 nm, the accuracy of the final measurement result is significantly enhanced.

Back to the list view