Logo of the Physikalisch-Technische Bundesanstalt

Virtual experiments

Working group 8.42

Overview

In a virtual experiment a measurement process is modeled mathematically and simulated on a computer. The employed mathematical model of the physical experiment is sought to be as realistic as possible. Virtual experiments allow different scenarios to be easily explored. In this way, measurement processes can be designed and specified with the help of the computer. Virtual experiments can be used to estimate the accuracy that is reached by a real measurement device. Dominant sources of uncertainty can be identified and quantitatively explored by carrying out a sensitivity analysis of the virtual experiment. The results obtained can be used to optimize the considered measurement system. Virtual experiments can help in the development of procedures from data analysis for real experiments, for example to assess and compare different estimation procedures under realistic conditions, or to validate assumptions made about the distribution of measured data.

Simulation of a tilted-wave interferometer (left) and a virtual 3D-measurement of an optical surface (right) using SimOptDevice.

Research

The research of PTB’s Working Group 8.42 focuses on virtual experiments for optical measurement devices and the development of procedures from data analysis for evaluating corresponding measurements. To this end, the simulation environment SimOptDevice has been developed as a software library, which is successfully employed in many applications regarding length-/form- and coordinate measurements, as well as photometry. SimOptDevice is regularly maintained and its functionality improved. It is currently applied to the tilted-wave interferometer, which is suitable for the optical form measurement of aspheres and freeforms. Methods of data analysis in conjunction with virtual experiments are developed and applied to solve the involved inverse problem and to calibrate the measurement process. Other research topics include the evaluation of uncertainties associated with real measurements utilizing the results of the corresponding virtual experiment, or the use of methods from deep learning in connection with virtual experiments. For example, virtual experiments can be used to create a database needed to train a neural network that is designed for analyzing experimental data.

Publications

Publication single view

Article

Title: Exact two-dimensional wave-front reconstruction from lateral shearing interferograms with large shears
Author(s): C. Elster
Journal: Appl. Opt.
Year: 2000
Volume: 39
Issue: 29
Pages: 5353--5359
OSA
DOI: 10.1364/AO.39.005353
Web URL: http://ao.osa.org/abstract.cfm?URI=ao-39-29-5353
Keywords: Interferometry; Optical inspection; Phase measurement
Tags: 8.42,Form
Abstract: A method is proposed for exact discrete reconstruction of atwo-dimensional wave front from four suitably designed lateral shearingexperiments. The method reconstructs any wave front at evaluationpoints of a circular aperture exactly up to an arbitrary constant fornoiseless data, and it shows excellent stability properties in the caseof noisy data. Application of large shears is allowed, and highresolution of the reconstructed wave front can be achieved. Resultsof numerical experiments are presented that demonstrate the capabilityof the method.

Back to the list view