Logo der PTB - Messen, Forschen, Wissen

Virtual experiments

Working group 8.42

Overview

In a virtual experiment a measurement process is modeled mathematically and simulated on a computer. The employed mathematical model of the physical experiment is sought to be as realistic as possible. Virtual experiments allow different scenarios to be easily explored. In this way, measurement processes can be designed and specified with the help of the computer. Virtual experiments can be used to estimate the accuracy that is reached by a real measurement device. Dominant sources of uncertainty can be identified and quantitatively explored by carrying out a sensitivity analysis of the virtual experiment. The results obtained can be used to optimize the considered measurement system. Virtual experiments can help in the development of procedures from data analysis for real experiments, for example to assess and compare different estimation procedures under realistic conditions, or to validate assumptions made about the distribution of measured data.

Simulation of a tilted-wave interferometer (left) and a virtual 3D-measurement of an optical surface (right) using SimOptDevice.

Research

The research of PTB’s Working Group 8.42 focuses on virtual experiments for optical measurement devices and the development of procedures from data analysis for evaluating corresponding measurements. To this end, the simulation environment SimOptDevice has been developed as a software library, which is successfully employed in many applications regarding length-/form- and coordinate measurements, as well as photometry. SimOptDevice is regularly maintained and its functionality improved. It is currently applied to the tilted-wave interferometer, which is suitable for the optical form measurement of aspheres and freeforms. Methods of data analysis in conjunction with virtual experiments are developed and applied to solve the involved inverse problem and to calibrate the measurement process. Other research topics include the evaluation of uncertainties associated with real measurements utilizing the results of the corresponding virtual experiment, or the use of methods from deep learning in connection with virtual experiments. For example, virtual experiments can be used to create a database needed to train a neural network that is designed for analyzing experimental data.

Publications

L. Hoffmann, I. Fortmeier;C. Elster
Machine Learning: Science and Technology,
2021.
L. Hoffmann;C. Elster
Journal of Sensors and Sensor Systems, 9
301--307,
2020.
M. Schenker, M. Stavridis, M. Schulz;R. Tutsch
Opt. Eng., 59(3),
034101,
2020.
I. Fortmeier, R. Schachtschneider, V. Ledl, O. Matousek, J. Siepmann, A. Harsch, R. Beisswanger, Y. Bitou, Y. Kondo, M. Schulz;C. Elster
Journal of the European Optical Society-Rapid Publications, 16(2),
2020.
R. Schachtschneider, M. Stavridis, I. Fortmeier, M. Schulz;C. Elster
Journal of Sensors and Sensor Systems, 8(1),
105--110,
2019.
R. Schachtschneider, I. Fortmeier, M. Stavridis, J. Asfour, G. Berger, R. B. Bergmann, A. Beutler, T. Blümel, H. Klawitter, K. Kubo, J. Liebl, F. Löffler, R. Meeß, C. Pruss, D. Ramm, M. Sandner, G. Schneider, M. Wendel, I. Widdershoven, M. Schulz;C. Elster
Measurement Science and Technology, 29(5),
055010,
2018.
I. Fortmeier
Berichte aus dem Institut für Technische Optik
, 2016
I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, W. Osten;C. Elster
Opt. Express, 24(4),
3393--3404,
2016.
I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, W. Osten;C. Elster
Optics express, 22(18),
21313--25,
2014.
F. Schmähling, G. Wübbeler, M. Lopez, F. Gassmann, U. Krüger, F. Schmidt, A. Sperling;C. Elster
Applied optics, 53(7),
1481--7,
2014.
G. Ehret, M. Schulz, M. Baier;A. Fitzenreiter
Journal of Physics: Conference Series, 425(15),
152016,
2013.
A. Wiegmann, M. Schulz;C. Elster
tm - Technisches Messen, 78(4),
184--189,
2011.
A. Wiegmann, M. Stavridis, M. Walzel, F. Siewert, T. Zeschke, M. Schulz;C. Elster
Precision Engineering, 35(2),
183--190,
2011.
M. Schulz, G. Ehret, M. Stavridis;C. Elster
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 616(2-3),
134--139,
2010.
A. Wiegmann, M. Schulz;C. Elster
Optics express, 18(15),
15807--19,
2010.
A. Wiegmann
PhD Thesis
, 2009
A. Wiegmann, M. Schulz;C. Elster
Optics Express, 17(13),
11098,
2009.
M. Schulz, A. Marquez, A. Wiegmann;C. Elster
DGaO Proceedings
, 2008
A. Wiegmann, C. Elster, M. Schulz;M. Stavridis
DGaO Proceedings
, 2008
M. Schulz, A. Wiegmann, A. Marquez;C. Elster
Opt. Pura Apl, 41
325,
2008.
(Open Access)
A. Wiegmann, M. Schulz;C. Elster
Optics Express, 16(16),
11975,
2008.
M. Schulz, A. Wiegmann;C. Elster
DGaO Proceedings
, 2007
A. Wiegmann, C. Elster, R. D. Geckeler;M. Schulz
DGaO Proceedings
, 2007
C. Elster, I. Weingärtner;M. Schulz
Precision Engineering, 30(1),
32--38,
2006.
M. Schulz;C. Elster
Optical Engineering, 45(6),
2006.
I. Weingärtner;C. Elster
Precision Engineering, 28(2),
164 - 170,
2004.
C. Elster, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz;I. Weingärtner
Optik - International Journal for Light and Electron Optics, 113(4),
154 - 158,
2002.
C. Elster
In P. Ciarlini, A.B. Forbes, F. Pavese, D. Richter, editor, Volume Advanced Mathematical & Computational Tools in Metrology and Testing IVof Series on Advances in Mathematics for Applied Sciences
Chapter 5, page 76-87
Publisher: World Scientific Singapore,
53 edition
, 2000
C. Elster
Appl. Opt., 39(29),
5353--5359,
2000.
C. Elster
Journal of Computational and Applied Mathematics, 110(1),
177--180,
1999.
C. Elster;I. Weingärtner
Applied Optics, 38(23),
5024,
1999.
C. Elster;I. Weingärtner
Journal of the Optical Society of America A, 16(9),
2281,
1999.
Export as:
BibTeX, XML