Logo of the Physikalisch-Technische Bundesanstalt

Analysis of dynamic measurements

Working Group 8.42

Overview

Dynamic measurements can be found in many areas of metrology and industry such as, for instance, in the measurement of time-dependent forces or accelerations. Methods from signal processing are often applied in the analysis of dynamic measurements. In many applications linear time-invariant systems are appropriate to model dynamic measurements, where the output signal is obtained as a convolution of the input signal and the measurement system’s impulse response. Input and output signal are not proportional to each other, and estimation of the system’s input signal from its output signal constitutes one important task in the analysis of dynamic measurements. Often digital filters are employed for this purpose. The evaluation of the uncertainty associated with the estimated input signal is particularly important from a metrological perspective.

Typical dynamic measurement with time-dependent errors in the output signal caused by the dynamic behavior of the measurement system.

Typical examples are measurements of mechanical quantities as, for example, force, torque and pressure. Further examples are oscilloscope measurements for the characterization of high speed electronics, hydrophone measurements for the characterization of medical ultrasound devices, the spectral characterization of radiation sources, spectral color measurements and camera-aided temperature measurements.

 

Research

One focus of PTB‘s Working Group 8.42 is the development of methods for the estimation of the input signal from the output signal when the dynamic behavior of the measurement system has been characterized. This includes the development of procedures for the evaluation of the uncertainty associated with the estimated input signal. Another focus is the development of methods for the analysis of dynamic calibration measurements aimed at determining the dynamic behavior of a measurement system.

Software

Publications

Publication single view

Article

Title: Dynamic torque calibration by means of model parameter identification
Author(s): L. Klaus, B. Arendacká, M. Kobusch and T. Bruns
Journal: ACTA IMEKO
Year: 2015
Volume: 3
Issue: 1
Pages: 1-6
Web URL: http://acta.imeko.org/index.php/acta-imeko/article/view/IMEKO-ACTA-04%20%282015%29-02-07/385
Keywords: mechanical model,model parameter identification
Tags: 8.42, Dynamik
Abstract: For the dynamic calibration of torque transducers, a model of the unmounted transducer and an extended model of the mounted transducer including the measuring device have been developed. The dynamic behaviour of a torque transducer under test will be described by its model parameters. This paper presents the models comprising the known parameters of the measuring device andthe unknown parameters of the transducer and how the calibration measurements are going to be carried out. The principle for the identification of the transducer’s model parameters from measurement data is described using a least squares approach. The influence of a variation of the transducer’s parameters on the frequency response of the expanded model is analysed.
Note: Open Access

Back to the list view

To top