Logo of the Physikalisch-Technische Bundesanstalt

Analysis of dynamic measurements

Working Group 8.42


Dynamic measurements can be found in many areas of metrology and industry such as, for instance, in the measurement of time-dependent forces or accelerations. Methods from signal processing are often applied in the analysis of dynamic measurements. In many applications linear time-invariant systems are appropriate to model dynamic measurements, where the output signal is obtained as a convolution of the input signal and the measurement system’s impulse response. Input and output signal are not proportional to each other, and estimation of the system’s input signal from its output signal constitutes one important task in the analysis of dynamic measurements. Often digital filters are employed for this purpose. The evaluation of the uncertainty associated with the estimated input signal is particularly important from a metrological perspective.

Typical dynamic measurement with time-dependent errors in the output signal caused by the dynamic behavior of the measurement system.

Typical examples are measurements of mechanical quantities as, for example, force, torque and pressure. Further examples are oscilloscope measurements for the characterization of high speed electronics, hydrophone measurements for the characterization of medical ultrasound devices, the spectral characterization of radiation sources, spectral color measurements and camera-aided temperature measurements.



One focus of PTB‘s Working Group 8.42 is the development of methods for the estimation of the input signal from the output signal when the dynamic behavior of the measurement system has been characterized. This includes the development of procedures for the evaluation of the uncertainty associated with the estimated input signal. Another focus is the development of methods for the analysis of dynamic calibration measurements aimed at determining the dynamic behavior of a measurement system.



Publication single view


Title: Dynamic uncertainty for compensated second-order systems
Author(s): S. Eichstädt, A. Link and C. Elster
Journal: Sensors
Year: 2010
Volume: 10
Issue: 8
Pages: 7621-31
Molecular Diversity Preservation International
DOI: 10.3390/s100807621
Web URL: http://www.mdpi.com/1424-8220/10/8/7621/htm
Keywords: dynamic model, digital filter, deconvolution, dynamic measurement
Tags: 8.42, Dynamik
Abstract: The compensation of LTI systems and the evaluation of the according uncertainty is of growing interest in metrology. Uncertainty evaluation in metrology ought to follow specific guidelines, and recently two corresponding uncertainty evaluation schemes have been proposed for FIR and IIR filtering. We employ these schemes to compare an FIR and an IIR approach for compensating a second-order LTI system which has relevance in metrology. Our results suggest that the FIR approach is superior in the sense that it yields significantly smaller uncertainties when real-time evaluation of uncertainties is desired.

Back to the list view

To top