Logo of the Physikalisch-Technische Bundesanstalt

Analysis of dynamic measurements

Working Group 8.42


Dynamic measurements can be found in many areas of metrology and industry such as, for instance, in the measurement of time-dependent forces or accelerations. Methods from signal processing are often applied in the analysis of dynamic measurements. In many applications linear time-invariant systems are appropriate to model dynamic measurements, where the output signal is obtained as a convolution of the input signal and the measurement system’s impulse response. Input and output signal are not proportional to each other, and estimation of the system’s input signal from its output signal constitutes one important task in the analysis of dynamic measurements. Often digital filters are employed for this purpose. The evaluation of the uncertainty associated with the estimated input signal is particularly important from a metrological perspective.

Typical dynamic measurement with time-dependent errors in the output signal caused by the dynamic behavior of the measurement system.

Typical examples are measurements of mechanical quantities as, for example, force, torque and pressure. Further examples are oscilloscope measurements for the characterization of high speed electronics, hydrophone measurements for the characterization of medical ultrasound devices, the spectral characterization of radiation sources, spectral color measurements and camera-aided temperature measurements.



One focus of PTB‘s Working Group 8.42 is the development of methods for the estimation of the input signal from the output signal when the dynamic behavior of the measurement system has been characterized. This includes the development of procedures for the evaluation of the uncertainty associated with the estimated input signal. Another focus is the development of methods for the analysis of dynamic calibration measurements aimed at determining the dynamic behavior of a measurement system.



Publication single view


Title: On-line dynamic error compensation of accelerometers by uncertainty-optimal filtering
Author(s): S. Eichstädt, A. Link, T. Bruns and C. Elster
Journal: Measurement
Year: 2010
Volume: 43
Issue: 5
Pages: 708-713
DOI: 10.1016/j.measurement.2009.12.028
Web URL: http://www.sciencedirect.com/science/article/pii/S0263224110000023
Keywords: Accelerometer,Digital filter,Dynamic measurements,Dynamik,Uncertainty
Tags: 8.42, Dynamik, Unsicherheit
Abstract: The output signal of an accelerometer typically contains dynamic errors when a broadband acceleration is applied. In order to determine the applied acceleration, post-processing of the accelerometer’s output signal is required. To this end, we propose the application of a digital FIR filter. We evaluate the uncertainty associated with the filtered output signal and give explicit formulae which allow for on-line calculation. In this way, estimation of the applied acceleration and the calculation of associated uncertainties may be carried out during the measurement. The resulting uncertainties can strongly depend on the design of the applied filter and we describe a simple method to construct an uncertainty-optimal filter. The benefit of the proposed procedures is illustrated by means of simulated measurements.

Back to the list view

To top