Logo PTB

Optical Medical Imaging

Working Group 8.31

Cerebral oximetry - reference measurement procedures and performance characterization

Marie Skłodowska-Curie Innovative Training Network (ITN)

  BitMap - Brain injury and trauma monitoring using advanced photonics

   European Union’s Horizon 2020 research and innovation programme
   (Marie Skłodowska-Curie grant agreement No 675332)
   01/2016 – 12/2019


  • The University of Birmingham (UoB), United Kingdom, Prof. Hamid Dehghani (Koordinator)
  • Fundacio Institut de Ciències Fotòniques (ICFO), Spanien
  • Politecnico die Milano (POLIMI), Italien
  • University College London (UCL), United Kingdom
  • Institute of Biocybernetics and Biomedical Engineering – Polish Academy of Sciences (IBIB PAN), Polen
  • Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Frankreich
  • University of Birmingham NHS Foundation Trust (UHB), United Kingdom
  • Fundacio Hospital Universitari Vall d'Hebron - Institut de Recerca (VHIR), Spanien
  • Picoquant Innovations GmbH (PQ), Deutschland
  • Hemophotonics SL (HP), Spanien

Principle of depth resolution by means of time-resolved near-infrared spectroscopy (NIRS) on the head. The spread of times of flight of photons depends on the optical properties (scattering and absorption coefficient) of the traversed tissue. By analysing the shape of the distribution of times of flight, depth-resolved assessment of optical properties is possible: Photons arriving after short times of flight ("early photons") on average penetrate less deeply into the tissue than photons with long times of flight ("late photons").

To top

The vision of the BitMap consortium is to develop a suite of standardised non-invasive devices that will provide essential information about brain health in neurocritical care and neuromonitoring, with a particular emphasis on 1. traumatic brain injury: the “silent epidemic of the third millennium” and 2. hypoxia in newborn children. Survivors present permanent neurological conditions that have a profound impact on the quality of life of individuals and their families, and hence a large socio-economic impact. The key factors influencing these conditions and their treatment are the avoidance of brain hypoxia and metabolic disturbances. BitMap will develop non-invasive photonics-based monitoring techniques and data analysis methods to provide related biomarkers. The project will focus on non-invasive methods to evaluate haemodynamic parameters, i.e. near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS).

A cohort of multi-disciplinary Early Stage Researchers (ESRs), embedded in leading laboratories across Europe, will work together on a programme designed to address the key technological and clinical challenges in neurocritical care. The ESRs will benefit from the diverse range of expertise in advanced photonics and clinical application which will substantially enhance their research competitiveness and employability. There is currently no graduate programme producing researchers with these attributes, but there is a significant market for such PhDs in the rapidly developing area of biomedical optics and in general in medical imaging technology development.

The major goal of the research project of the ESR at PTB is an improved quantification of haemoglobin oxygen saturation in the human brain by non-invasive time-resolved near-infrared spectroscopy. This includes the following tasks:

  • Optimizing instrumentation for reliable measurement of time-resolved diffuse reflectance
  • Developing, implementing and validating novel analysis methods aiming at accurate quantification of absorption and oxygenation in deep tissue compartments (brain)
  • Designing and constructing adequate tissue-like phantoms and devising tests to assess the performance of instrumentation and methods of data analysis for cerebral oximetry
  • Characterising and comparing various instruments

To top

Publications (previous work)

  • F. Martelli, S. Del Bianco, L. Spinelli, S. Cavalieri, P. Di Ninni, T. Binzoni, A. Jelzow, R. Macdonald, and H. Wabnitz, “Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements.,” J. Biomed. Opt. 20(11), 115001 (2015) [doi:Opens external link in new window10.1117/1.JBO.20.11.115001].
  • H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. C. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 86010 (2014) [doi:Opens external link in new window10.1117/1.JBO.19.8.086010].
  • H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. C. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 86012 (2014) [doi:Opens external link in new window10.1117/1.JBO.19.8.086012].
  • A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014) [doi:Opens external link in new window10.1364/BOE.5.001465].
  • L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, a. a. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037 (2014) [doi:Opens external link in new window10.1364/BOE.5.002037].
  • F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation.,” J. Biomed. Opt. 19(7), 76011 (2014) [doi:Opens external link in new window10.1117/1.JBO.19.7.076011].

To top