Logo PTB

Biomedical Magnetic Resonance

Department 8.1

Projects

NeuroMet - Innovative measurements for improved diagnosis and management of neurodegenerative diseases

Period:7/2016 - 6/2019
Funding:    EMPIR
Partners: LGC Limited (UK), Instituto Nazionale di Ricerca Metrologica (I), Laboratoire National d’Essais (F), SP Sveriges Tekniska Forskningsinstitut AB (S), NeuroCure Clinical Research Centre, University Medicine Charité (D), Laboratory of Biochemistry-Clinical Laboratory, Centre Hospitalier Universitaire de Montpellier (F),National Amyloid Centre and Wolfson Drug Discovery, University College London (UK), School of Nursing at the University of East Anglia (UK)
Contact:8.12, Bernd Ittermann


This project will combine for the first time the diverse and unique expertise of a number of national measurement institutes together with clinicians and academics to overcome specific metrological barriers in neurodegenerative disease (NDD) diagnosis and treatment with routes to implement this back into the clinic. The project outcomes will contribute to establishing the metrological infrastructure needed to a) facilitate NDD earlier stage diagnosis, b) track disease progression, c) monitor success of drug therapeutic clinical trials and d) monitor response to intervention to improve quality of life.

Together with Charité, PTB will contribute by quantifying imaging and molecular biomarkers in vivo using ultrahigh field MR technology.


More information: Opens external link in new windowhere

MRgRT - Metrology for MR guided RadioTherapy

MRgRT - Metrology for MR guided RadioTherapy

Period:2016 - 2019
Funding:    EMPIR
Partners:VSL (NL), Commissariat à l'énergie atomique et aux énergies alternatives (F), NPL (UK), Physikalisch-Technische Bundesanstalt (6.2, 8.1), Deutsches Krebsforschungszentrum (D), Universitair Medisch Centrum Utrecht (NL), The University of Manchester (UK), The Christie NHS Foundation Trust (UK), Eidgenössisches Institut für Metrologie METAS (CH)
Contact:8.11, Frank Seifert


Cancer patients are treated with radiotherapy in which a high dose of ionizing radiation is used to target and kill cancerous cells. MR-guided radiotherapy, the simultaneous use of Magnetic Resonance (MR)-imaging and Megavolt (MV) photon irradiation allows to see what you treat, and will lead to a step change in radiotherapy the coming years. Improved metrology in dosimetry and imaging for the safe clinical implementation and to support future innovations in MR guided radiotherapy is of great importance.

A special problem of MR-guided radiotherapy in presence of intra-fractional anatomy changes consists of inner organ landmark tracking by real-time MR imaging. Before utilization in radiotherapy the robustness and reliability of such MR procedures must be independently assessed and verified. It was shown previously [24] that the synergetic use of multi-channel UWB radar and MRI is capable of gaining complementary information to reduce uncertainties and to improve reliability of inner organ landmark tracking. The project will go beyond state of the art by using the technique in MR-guided radiotherapy and will overcome the challenges to process the UWB radar data and to fuse them with the MRI information in real-time.


More information: Opens internal link in current windowhere

BioCog - Biomarker development for postoperative cognitive impairment in the elderly

BioCog - Biomarker development for postoperative cognitive impairment in the elderly

Period:8/2014 - 2/2019
Funding:    EU
Partners:12 international partners
Contact:8.12, Bernd Ittermann


Major surgery in elderly patients (> 65 years) often leads to major short-term cognitive disturbance (postoperative delirium, POD), with an associated tendency to increased vulnerability to late-life dementia. In the framework of a large study on 800 subjects, PTB will carry out MR spectroscopy and resting-state fMRI at 7 T in order to identify biomarkers for this vulnerability. A novel image-based technique will be established to quantify the Nucelus basalis Meynert, one of the cholinergic nuclei relevant to neurodegeneration.

 

More information: Opens external link in new windowhere

TRAINSTIM - Neuronal basis of active aging

TRAINSTIM - Neuronal basis of active aging

Period:7/2015 - 12/2018
Funding:    BMBF
Partners:Charité - Universitätsmedizin Berlin, TU Dresden
Contact:8.12, Bernd Ittermann


Subproject: Study of the age dependence of the effects of transcranial direct current stimulation on GABA concentration and resting-state brain connectivity

The effects of transcranial direct current stimulation (tDCS) on neurotransmitter concentrations and resting-state brain connectivity are studied. GABA and glutamate in healthy subjects from three age groups are determined using MR spectroscopy before and after intervention whilst during intervention resting-state fMRI data are acquired. MEGA-PRESS is used for MRS, wheras resting-state connectivity is measured using Eigenvector Centrality Mapping and FSL.

 

More information: Opens external link in new windowhere

Model-based image reconstruction for fast and accurate T1-mapping of the heart

Model-based image reconstruction for fast and accurate T1-mapping of the heart

Period:2015 - 2018
Funding:    EMPIR
Partners:Experimental and Clinical Research Center, Charité – Universitätsmedizin Berlin
Contact:8.13, Christoph Kolbitsch

Development of novel motion-compensated T1-mapping approaches which utilise signal models during image reconstruction in order to provide accurate T1 maps in the shortest possible scan time. The close collaboration with our clinical partners at the Charité Berlin allows for a quick translation of novel techniques into clinical practice to benefit patient care as soon and as effective as possible.


More information: Opens internal link in current windowhere

3He-129Xe nuclear spin co-magnetometer used in ultra-low magnetic fields in search of an electric dipole moment of xenon

3He-129Xe nuclear spin co-magnetometer used in ultra-low magnetic fields in search of an electric dipole moment of xenon

Period:2010 - 2016
Funding:    DFG
Partners:   Dep 8.2, Dep 8.4, Technische Universität München, University of Michigan, Michigan State University
Contact:8.11, Wolfgang Kilian


The priority program aims to find answers to fundamental questions of modern particle physics and astrophysics by means of experiments with slow and ultra-cold neutrons. These questions encompass the understanding of natural forces and the associate symmetries and investigations on the gravitational force at very small intervals. In this context, PTB deals with the sub-project "Development of a procedure to optimize magnetic shielding for spin precession experiments like nEDM". Within the scope of this sub-project, a portable magnetically shielded room with a residual magnetic field of < 700 picoteslas and a field gradient of less than 300 pT/m was put into operation in 2015. In the magnetically shielded rooms of PTB in Berlin and of the Technical University of Munich (TU München), precision measurements of the free precession of highly polarized nuclear spins of rare gases are to be carried out in search of an electric dipole moment in the xenon nucleus. In addition to the work on the apparatus, data analysis is an important field of work to enable consistently stating the uncertainties of the upper limits to be determined from the measurements. Such experiments in the range of extremely low energies are expected to provide new insights into fundamental physics.

 

129Xe 3He comagnetometer in a magnetically shielded room (Helmholtz coils, Dewar with SQUIDs, sphere with the gases 129Xe and 3He)

 More informationen: Opens external link in new windowhere

T1MES - T1 mapping quality assurance

T1MES - T1 mapping quality assurance

Period:   2014 - 2017
Partners:   Asnières sur Seine - PERTIMM, Bergen - NNL, Berlin- Charité, Berlin - PTB, Bonn - DRZE, Brighton - University of Sussex, Cambridge - University of Cambridge, Dresden - Technische Universität Dresden, Dublin - TCD, Evry - CNG, Hamburg - UKE, London - Delosis, London - IoP, Mannheim - CIMH, Munich - GABO:mi, Nottingham - UNOTT, Orsay - CEA, Orsay - INSERM, Paris - SCITO
Contact:8.12, Rüdiger Brühl


A collaboration consisting of a specialist MRI enterprise, clinicians, physicists, and national metrology institutes was formed in order to develop a phantom-based quality assurance system for verification of T1-measurement stability over time at individual sites. A phantom was designed and produced (by http://www.resonancehealth.com) covering clinically relevant ranges of T1 and T2 in blood and myocardium. At 16 sites the phantoms are regularly scanned using different T1-mapping sequences and hardware, leading to a dataset for quality assessment and standardization.

Non-cryogenic concentrating of hyperpolarized 129Xe in a continuous gas flow

Non-cryogenic concentrating of hyperpolarized 129Xe in a continuous gas flow

Period:   since 2013
Partners:   Helmholtz-Zentrum Geesthacht
Contact:8.11, Wolfgang Kilian


Using hyperpolarized 129Xe gas in magnetic resonance imaging has enjoyed growing popularity in the past few years, both for use in animal models and in applications for humans. The natural occurrence of xenon in the atmosphere and the possibility of generating signals not only from the gas phase, but also dissolved in the body have contributed to this gain in popularity. The standard procedure to obtain hyperpolarization, however, requires the use of a gas mixture with a comparatively small xenon partial pressure. To date, the hyperpolarized xenon has mostly been separated from the process gases by cryogenic freezing. This procedure is complicated and makes it very difficult to obtain a continuous supply of hyperpolarized 129Xe. By using semipermeable gas-separating membranes, we want to try and eliminate these disadvantages in order to provide a continuous gas flow of highly polarized xenon gas without active control elements and in a high concentration at the place of use.

 

Gas separation module to concentrate hyperpolarized 129Xe in a continuous gas flow

More informationen: Opens external link in new windowhere

IMAGEN - A European study on mental health in teenagers

IMAGEN - A European study on mental health in teenagers

Period:2007 - 2018
Funding:    EU
Partners:    IMAGEN consortium, Charité - Universitätsmedizin Berlin
Contact:8.12, Rüdiger Brühl


The first sub-project examined 14-year-olds and their family background within the scope of a European study. This study consisted in examining approx. 2000 young people at eight research centers (London, Nottingham, Dublin, Berlin, Hamburg, Mannheim, Paris, Dresden). The objective was to be able to make statements on the mental health and on the behavior in relation with risk factors (such as drugs, gambling, etc.) and to correlate these with independent measurement methods such as MRI and genetic analysis. This examination consisted of surveys, psychological tests, genetic investigations and a 2-hour MRI investigation program using fMRI, DTI and anatomic imaging. By repeating this examination on the same volunteers at the age of 18 and 21 years, valuable data on their development was obtained.


More information: here

LeAD – MR spectroscopic correlates of learning during alcohol withdrawal

LeAD – MR spectroscopic correlates of learning during alcohol withdrawal

Period:5/2013 - 12/2016
Funding:    DFG
Partners:Charité - Universitätsmedizin Berlin, MPI für Bildungsforschung
Contact:8.12, Bernd Ittermann


The project is part of Research Group “Learning & habitization as predictors of the development & maintenance of alcoholism”. The impact of the dopamine x glutamate interaction on learning deficits and consecutive relapse probability is targeted with[18F]fallypride PET (Charité) and the measurement of absolute concentrations of glutamate with MRS (PTB).

Metabolite determination in hippocampus (segmented using FreeSurfer) with LCModel. CRLB – Cramér-Rao Lower Bounds, a measure of fit uncertainty

Dosimetrie mit Alanin für die MR-geführte Strahlentherapie

Dosimetrie mit Alanin für die MR-geführte Strahlentherapie

Zeitraum:2016 - 2017
Förderung:    DFG
Partner:FB 6.2, DKFZ Heidelberg
Kontakt:FB 6.2, Franziska Renner


Bei modernen Methoden der externen Strahlentherapie mit Beschleunigern müssen die Bestrahlungsparameter so gewählt werden, dass eine möglichst große Wirkung im Tumorgebiet erzielt und gleichzeitig umliegendes, gesundes Gewebe optimal geschont wird. Dies wird erst durch den Einsatz bildgebender Verfahren möglich, wobei Bildgebung und Bestrahlung bisher sequenziell mit getrennten Geräten erfolgen. Eine Steigerungsform dessen stellt die Kombination eines bildgebenden Verfahrens, wie z.B. der MRT, mit einem Linearbeschleuniger in einem Gerät dar. Solche MR-Linac-Geräte erlauben es, auf zeitliche Änderungen der Anatomie einzugehen, bis hin zu einer Anpassung der Bestrahlung in Echtzeit (4-D). Dieser neue Entwicklungsschritt in der Strahlentherapie kann nicht nur die Erfolgschancen der Therapie in bestehenden Anwendungsfeldern erhöhen, sondern auch neue Anwendungsgebiete erschließen, z.B. bei der Therapie von Tumoren, die sich aufgrund von Atmung oder Herzschlag stark bewegen. Andererseits stellt die Zusammenführung zweier hochkomplexer Methoden auch vor eine Reihe neuer Herausforderungen im Bereich der Medizinphysik und -technik. Ein Aspekt ist hierbei die qualitätsgesicherte Dosimetrie im Strahlungsfeld eines MR-Linac-Gerätes. Zentrale Idee des vorliegenden Projekts ist es, die Eignung der Alanin-Elektronenspinresonanz für die qualitätsgesicherte Dosimetrie im Strahlungsfeld von kombinierten MR-Linac-Geräten zu untersuchen. Parallel dazu wird die Entwicklung eines MR-kompatiblen Sekundärnormals auf Alaninbasis vorangetrieben.

 Weitere Informationen: Opens external link in new windowhier

Metrology for next-generation safety standards and equipment in MRI safety

Metrology for next-generation safety standards and equipment in MRI safety

Period:2012 - 2015
Funding:    EMRP
Partners:Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy; VSL B.V., Delft, Netherlands; King's College London, London, UK
Contact:8.1, Bernd Ittermann


The goal of this research project is to promote the safe use of MRI by providing the metrological underpinning for future safety standards and regulations. Specific topics of interest are:

  • The distribution of radio-frequency electromagnetic fields within the human body
  • Induced effects due to movements in the stray magnetic field of an MRI scanner
  • Emerging technologies 1: "Ultrahigh" magnetic field strengths and parallel transmission
  • Emerging technologies 2: Photon dosimetry for an MRI-accelerator combination
  • Metallic implants

 


More information: Opens external link in new windowhere

Mechanisms of anodal direct current stimulation in patients with recurrent brain injury

Mechanisms of anodal direct current stimulation in patients with recurrent brain injury

Period:1/2013 - 9/2015
Funding:    DFG - "Mechanisms of anodal direct current stimulation in patients with recurrent brain injury - a multimodal analysis using electrophysiology, MR spectroscopy and functional MRI" (FL 379/11-1)
Partners:Charité - Universitätsmedizin Berlin
Contact:8.12, Bernd Ittermann


Using MR spectroscopy, it was tested whether GABA increases in the brain of patients who underwent recurrent traumatic brain injury. As GABAergic activity can be modulated by transcranial direct current stimulation (tDCS) in a polarization-dependent manner, a normalization of GABA was expected in these patients. In addition, transcranial magnetic stimulation was used to indirectly detect changed GABA levels, and correlational analyses served to detect an association of decreased GABA with learning success in behavioral paradigms, and cortical plasticity.

 

The effect of atDCS on GABA concentration and functional connectivity is studied in two seperate sessions (atDCS vs. sham). T1 = T1-weighted MRI sequence, MRS = MR spectroscopy, atDCS = anodal transcranial direct current stimulation, fMRT = functional MRI („resting state“ fMRI)

The multisensory mind: From neural mechanisms to cognition

The multisensory mind: From neural mechanisms to cognition

Period:5/2014 - 12/2015
Funding:    ERC
Partners:Charité - Universitätsmedizin Berlin
Contact:8.12, Bernd Ittermann


A key objective of this project is to examine the relationships of resting GABA concentration in a cortical network comprising primary sensory areas and traditional multisensory regions (e. g. the superior temporal gyrus) to multisensory integration through neural synchronization. To this end localized cortical GABA concentration will be measured in a cortical network using MRS, and correlated to synchronized EEG activity during multisensory processing.

Path analysis reveals that GABA concentration mediates the positive correlation between gamma band oscillations (GBO) and the sound-induced flash illusion (SIFI) rate.

BiOrigin – Metrology for biomolecular origin of disease

BiOrigin – Metrology for biomolecular origin of disease

Period:6/2012 – 5/2015
Funding:    EMRP
Partners:   National Physical Laboratory (UK), Joint Research Center (EU), University of Oxford (UK), University of Edinburgh (UK), Freie Universität Berlin (D), Max-Delbrück-Centrum (D), Robert-Koch-Institut (D)
Contact:8.11, Lorenz Mitschang


This project aimed to systematically investigate the structure/function relation for peptides in their interaction with membranes of microbes or corresponding model systems. The investigations focused on the metrological characterization of antimicrobial substances for medicine. As a result, procedures for the quantification of relevant quantities for the interaction of peptides both with liposomes and with living cells and also strategies for their imaging were developed and established.


More information: Opens external link in new windowhere

SHAVE – Anatomically selective MR spectroscopy

SHAVE – Anatomically selective MR spectroscopy

Period:   2013 - 2015
Partners:   Otto-von-Guericke-Universität Magdeburg
Contact:8.1, Bernd Ittermann


State of the art in quantitative brain MRS is to acquire the signal from a cuboid voxel placed in or around the brain structure of interest. Adaptation of a voxel to the anatomical structure of interest is highly desirable in order to avoid either prohobitively small voxels or large amounts of contaminating tissue. The novel sequence SHAVE (SHAped Voxel Excitation) allows for a two-dimensional anatomically adapted excitation. An added two-shot approach permits localization in the third dimension, including readout at very short echo times, which enables the detection of metabolites having short T2 relaxation.

In vivo MR spectrum acquired from an anatomically shaped, white-matter only voxel (insert) excited using SHAVE (8-channel transmit array). The insert shows the actually excited magnetization (left, with blue background) and the respective target voxel (right, superimposed on a localizer scan).

EARS - Human Perception of Non-Audible Sound

EARS - Human Perception of Non-Audible Sound

Period:2012 - 2015
Funding:    EMRP
Partners:8.2, 1.6, MPI für Bildungsforschung
Contact:8.12, Rüdiger Brühl


The project EARS addresses the human perception of non-audible sound. Although the applied frequencies of 8 to 20 Hz and 20 to 24 kHz are considered to be outside the human spectrum they can be sensed at high sound pressure. The brain activity and cognitive performance of 20 volunteers were recorded at different frequencies and sound pressure levels. Standardized use of the measurement modalities MEG and fMRI were made possible due to the collaboration of 4 working groups.


More information: Opens external link in new windowhere

Earlier projects

NGFN-Plus - Endophenotyping with spectroscopy: Genetic modulation and treatment response

NGFN-Plus - Endophenotyping with spectroscopy: Genetic modulation and treatment response

Period:1/2010 - 8/2012
Funding:    DFG
Partners:Charité - Universitätsmedizin Berlin, ZIMH Mannheim
Contact:8.12, Bernd Ittermann


A method for in vivo quantification of brain glutamate developed at PTB was applied in this project. Chronic intake of ethanol is associated with a compensatory up-regulation of glutamatergic neurotransmission. Polymorphisms within the glutamate-associated genes modulate the risk of alcohol intake, dependence, craving and relapse. The goal of the project SP14 of the Integrated Genome Research Network „Genetics of Alcohol Addiction“ in NGFN Plus was to investigate (i) the association of genetic variants with cerebral glutamate concentration measured by MRS, (ii) whether increased glutamate brain levels are predictive for treatment response and (iii) if glutamate concentrations are related to alcohol risk factors for alcohol use in non-dependent probands.

Glutamate spectroscopy: cortical MR spectrum together with phantom spectra of glutamate and glutamine at approximately physiological concentrations. There is little interference of the C4 resonances around 2.35 ppm of the two neurotransmitters, thus permitting a fairly selective determination of glutamate.

 More information: Opens external link in new windowhere

ultraMEDIS - UWB-Radar als medizinisches Sensorsystem

ultraMEDIS - UWB-Radar als medizinisches Sensorsystem

Zeitraum:2007 - 2012
Förderung:    DFG
Partner: Technische Universität Ilmenau, Universitätsklinikum Jena
Kontakt:AG 8.11, Frank Seifert


Das interdisziplinäre Forschungsvorhaben ultraMEDIS, das innerhalb des DFG-Schwerpunktprogramms 1202 "Ultrabreitband-Funktechniken für Kommunikation, Lokalisierung und Sensorik" (UKoLoS) angesiedelt war, zielte auf die Nutzung der Ultrabreitband-Radartechnik (UWB-Radar, Bandbreite 1-10 GHz) für biomedizinische Anwendungen. Dabei nutzt man die hohe zeitliche und räumliche Auflösung der Radarsensoren, deren Kompatibilität zu Schmalbandsystemen sowie die geringe Leistung der Sondierungssignale einschließlich deren Fähigkeit zur Objektdurchdringung. Gerade letztere Eigenschaft macht das UWB-Radar sehr attraktiv für Anwendungen in der Medizin.


Weitere Informationen: Opens external link in new windowhier

INUMAC - Imaging of neuro disease using high field MR and contrastopheres

INUMAC - Imaging of neuro disease using high field MR and contrastopheres

Zeitraum:2008 - 2011
Förderung:    BMBF
Partner:Bruker BioSpin MRI GmbH, Albert-Ludwigs-Universität Freiburg
Kontakt:AG 8.11, Frank Seifert


Ziel des INUMAC-Konsortiums war die Erforschung von Hochfeld-Magnetresonanztomographie-Verfahren und neuen zielgerichteten Kontrastmitteln, die für die Diagnostik neurologischer Erkrankungen geeignet sind. Das Projekt war in drei Arbeitspakete gegliedert:

  1. Untersuchung innovativer Technologien zur verbesserten Sensitivität, räumlichen, zeitlichen und spektralen Auflösung von klinischen MR-Systemen anhand von Forschungs- und Entwicklungsarbeiten für ein Ganzkörper-Ultrahochfeld-MRT mit 11,7 Tesla.
  2. Evaluierung neuer Ansätze und Konzepte für verschiedene kritische MR-Systemkomponenten, wie neue Gradientenkonzepte, parallele Bildgebung und Echtzeit-Meßverfahren.
  3. Forschung und präklinische Entwicklung neuartiger zielgerichteter Kontrastmittel für die Diagnose der Alzheimer-Krankheit, von Gehirntumoren und Schlaganfall.

 Weitere Informationen: Opens external link in new windowhier

Entwicklung und Implementation von Messverfahren zur SAR-Bestimmung an Probenköpfen für die Hochfeld-MRT

Entwicklung und Implementation von Messverfahren zur SAR-Bestimmung an Probenköpfen für die Hochfeld-MRT

Zeitraum:2008 - 2011
Förderung:    BMWi
Partner:Rapid Biomedical GmbH
Kontakt:FB 8.1, Bernd Ittermann


Ziel des Projektes war es, bei der Fa. Rapid Biomedical ("Rapid") ein Verfahren zu implementieren, das einen sicheren Betrieb der dort entwickelten Hochfrequenz(HF)-Spulen an MR-Systemen mit hohen Feldstärken (überwiegend 3 T und 7 T) gewährleistet. Diese Sicherheit betrifft insbesondere die SAR-Belastung von Patienten, die in MR-Untersuchungen nicht vermeidbar, aber minimierbar ist. Die gesetzlichen Grenzwerte sind zwar klar definiert, aber nur schwer genau bestimmbar. Hierfür sollte die Kooperation mit der PTB weiterhelfen. Grundsätzliche Konzepte zu dieser Fragestellung existierten an der PTB bereits vor Projektbeginn, waren jedoch nicht unmittelbar in das KMU übertragbar, da sie Zugang zu teuren MRT-Scannern und weiterem High-End-Equipment voraussetzten. Die Erarbeitung einer kostengünstigen und aufgabenangepassten Implementierung dieser Verfahren bei Rapid war eine zentrale Aufgabenstellung des Projekts.

3He 129Xe nuclear spin co-magnetometer in ultra-low magnetic fields in search of a Lorentz invariance violation and of new pseudo-scalar bosons (axion-like particles)

3He 129Xe nuclear spin co-magnetometer in ultra-low magnetic fields in search of a Lorentz invariance violation and of new pseudo-scalar bosons (axion-like particles)

Period:   2008 - 2013
Partners:   Dep 8.2, Universität Mainz, Universität Heidelberg
Contact:8.11, Wolfgang Kilian


Due to the very long coherence times, the simultaneous and free precession of highly polarized nuclear spins of rare gases in ultra-low, highly homogeneous magnetic fields allows very long measurement times (from several hours to several days) and, thus, an extremely high frequency resolution. By using two sorts of atoms, this procedure represents a kind of clock comparison which allows influences due to magnetic field variations to be eliminated and, thus, enables the search for hypothetical effects which are postulated by theories beyond the standard model of particle physics. In this project, the existing upper limits were lowered for both interactions which lead to Lorentz invariance violation and which would generate the short-range spin/mass interaction (mediated by pseudo-scalar bosons).

Innovation competition in medical engineering: Biosensor-based 129Xe magnetic resonance tomography in cells and mouse models of autoimmunity

Innovation competition in medical engineering: Biosensor-based 129Xe magnetic resonance tomography in cells and mouse models of autoimmunity

Period:5/2010 – 11/2013
Funding:    BMBF
Partners:   Leibniz Institut für Molekulare Pharmakologie, Freie Universität Berlin
Contact:8.11, Lorenz Mitschang


The joint research project directed by PTB aimed to develop a technology of molecular imaging of immunologically relevant systems by using hyperpolarized 129Xe in MRI. For this purpose, a mobile polarizer for use in animal imaging (external lab) and an animal ventilator for mice or rats were developed and manufactured, and the fundamental mechanisms of the interaction of hyperpolarized 129Xe with binding substances (contrast agents) relevant to molecular imaging were elucidated.

Representation and manufactured mobile xenon polarizer

Cooperations

Berliner Ultrahochfeld-Facility

Berliner Ultrahochfeld-Facility

Zeitraum:seit 2009
Förderung:    BMBF
Partner:Max-Delbrück-Centrum für Molekulare Medizin
Kontakt:FB 8.1, Bernd Ittermann


Die Berliner Ultrahochfeld Facility (BUFF) wurde von einem Konsortium Berliner Forschungseinrichtungen unter Führung des Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch auf dem MDC-Campus errichtet. Kernstücke der neuen Einrichtung waren zunächst ein 7-Tesla-Ganzkörper-MRT für die klinische Forschung und ein 9,4-Tesla-MRT für Untersuchungen an Kleintieren.


Weitere Informationen: Opens external link in new windowhier

European network for hyperpolarization physics and methodology in NMR and MRI

European network for hyperpolarization physics and methodology in NMR and MRI

Period:10/2010 - 10/2015
Funding:    EU
Partners: Members of EUROHyperPOL
Contact:8.11, Wolfgang Kilian


Nuclear magnetic resonance (NMR) spectroscopy, microscopy and imaging techniques (MRI) play a crucial role in numerous fields of science ranging from physics, chemistry, and material sciences to biology and medicine. However, despite all their versatility, a common key issue is sensitivity, which limits the applicability of NMR spectroscopy and imaging techniques in the case of fast dynamic processes and detection of low concentrated molecules in both in vitro and in vivo applications. The action aims to stimulate and accelerate collaborations and joint research efforts between European groups into hyperpolarization physics and methodology with the goal to develop robust strategies for sensitivity enhancement in NMR and MRI.

More information: Opens external link in new windowhere

Imaging-Netzwerk Berlin

Imaging-Netzwerk Berlin

Zeitraum:   seit 2006
Partner:Berlin Partner für Wirtschaft und Technologie GmbH
Kontakt:FB 8.1, Bernd Ittermann


Das Imaging Netzwerk Berlin (INB) hat das Ziel, die Zusammenführung und Koordination der verteilten Aktivitäten im Bereich der medizinischen Bildgebung voranzutreiben und mögliche Lücken im Wertschöpfungsprozess zu schließen. Das Imaging Netzwerk Berlin (INB) ist als offenes Netzwerk konzipiert, in dem neue Partner willkommen sind. Seit 2012 ist es bundesweit für neue Mitglieder geöffnet.

Weitere Informationen: Opens external link in new windowhier

GUFI - German ultrahigh field imaging

GUFI - German ultrahigh field imaging

Zeitraum:2013 - 2016
Förderung:    DFG
Partner: BUFF, Berlin; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen; Universitätsklinik Freiburg; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg; Forschungszentrum Jülich; Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig; Leibniz-Institut für Neurobiologie und Otto-von-Guericke Universität Magdeburg, Magdeburg; Max-Planck-Institut für biologische Kybernetik, Tübingen; Deutsches Zentrum für Herzinsuffizienz (DZHI), Würzburg
Kontakt:FB 8.1, Bernd Ittermann


Innerhalb der vergangenen Jahre wurden in Deutschland sieben Zentren für humane Ultrahochfeld(UHF)-MR-Bildgebung eingerichtet. Um diese hochkomplexe Technologie einer größeren Anzahl von Forschern zugänglich zu machen, bedarf es einer Zusammenarbeit der UHF-MR-Zentren. Zur Erlangung dieses Ziels haben alle deutschen UHF-Zentren beschlossen, ein nationales Netzwerk mit dem Namen German Ultrahigh Field Imaging (GUFI) zu etablieren. Dreizehn Standorte gehören derzeit zu GUFI. Weitere UHF-Einrichtungen sind herzlich eingeladen, sich dem GUFI-Netzwerk anzuschließen. Dieses Projekt wird im Rahmen der Förderung „Gerätezentren – Core Facilities“ von der Deutschen Forschungsgemeinschaft (DFG), Fördernummer: LA 1325/5-1, gefördert.

 Weitere Informationen: Opens external link in new windowhier

Contact

Address

Physikalisch-Technische Bundesanstalt
Abbestraße 2–12
10587 Berlin