Logo PTB

IR Spectrometry

Working Group 7.11

Profile

The IR-spectrometry group operates two beamlines at the electron storage ring from PTB, the Metrology Light Source (MLS), covering a wavelength range from 600 nm up to 8 mm. The high spectral radiance of the emitted synchrotron radiation allows in particular spectroscopic investigations using multivariate analysis and at high spatial resolution. Based on the interaction between IR radiation and matter the group develops concepts for contactless and traceable determination of various physical quantities, such as conductivity, mechanical strain and local temperature. The instrumentation is also employed in research collaborations in the fields of materials science and bioanalytics.

To top

Research/Development

The IR-spectrometry group develops methods for FTIR-spectroscopy motivated by metrological applications and research in the fields of materials science and bioanalytics. Besides conventional FTIR spectrometers the group also employs a scattering-type scanning nearfield optical microscope (s-SNOM) [1, 2, 12]. It allows the characterization of optical nearfield interactions being a comprehensive research activity in itself. Here, a scanning force microscope with an FTIR spectrometer module allows simultaneous dimensional and analytic nanometrology. Currently the group works on the following topics:

  • Timeresolved spectroscopic characterization of electron bunches in special storage ring operation modes in cooperation with the Helmholtz Zentrum Berlin (Opens external link in new windowHZB) [3, 4, 5] and Opens external link in new windowDLR [8, 9].
  • Materials science, including characterization of

    • composition and structure, e.g. for environmental research in cooperation with Opens external link in new windowBAM,
    • electrical and magnetic parameter of low-dimensional structures [6, 7, 11] in cooperation with Opens external link in new windowFU Berlin and the Opens external link in new windowHitachi Cambridge Laboratory,
    • mechanical strain [13] within an EMPIR ADVENT project.

  • Bioanalytic applications of FTIR-spectroscopy, including “efficient biodiagnostic tools using SEIRA methodology” [10], as well as within the EMPIR projects Opens external link in new windowEMRP Q-AIMDS (Cooperation with Opens external link in new windowRKI), Opens external link in new windowBiOrigin  [15]  and MetVBadBugs [14].
  • Contactless determination of the temperature distribution at the nanoscale.

To top

Services

The group offers measurement services using two FTIR-spectrometers and a s-SNOM system within Opens external link in new windowEURAMET.

To top

Information

[1] P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm: Opens external link in new windowNear-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation, Optics Express (2013), 21, 2913

[2] P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, G. Ulm: Opens external link in new windowCharacterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy, Optics Express (2014), 22, 17948

[3] R. Müller et al., Opens external link in new windowThe Metrology Light Source of PTB – a Source for THz Radiation, J Infrared Milli Terahz Waves (2011), 32, 742

[4] J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, Opens external link in new windowMetrology Light Source: The first electron storage ring optimized for generating coherent THz radiation, Phys. Rev. STAB (2011), 14, 030705

[5] A. Pohl, A. Semenov, H.-W. Hübers, A. Hoehl, M. Ries, G. Wüstefeld, G. Ulm, K. Il’n, P. Thoma, and M. Siegel, Opens external link in new windowField transients of coherent terahertz synchrotron radiation accessed via time-resolveing and correlation techniques, J. Appl. Phys. (2016) 119, 114903

[6] P. Patoka, G. Ulrich, A. E. Nguyen, L. Bartels, P. A. Dowben, V. Turkowski, T. S. Rahman, P. Hermann, B. Kästner, A. Hoehl, G. Ulm, and Eckart Rühl, Opens external link in new windowNanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy, Optics Express (2016), 24, 25219

[7] J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Opens external link in new windowExperimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System, Phys. Rev. Lett. (2005), 94, 47204

[8] P. Probst, A. Scheuring, M. Hofherr, D. Rall, S. Wünsch, K. Il’in, M. Siegel, A. Semenov, A. Pohl, H.-W. Hübers, V. Judin, A.-S. Müller, A. Hoehl, R. Müller and G. Ulm, Opens external link in new windowYBCO quasioptical detectors for fast time-domain analysis of terahertz synchrotron radiation, Appl. Phys. Lett. (2011), 98, 043504

[9] P. Probst, A. Semenov, M. Ries, A. Hoehl, P. Rieger, A. Scheuring, V. Judin, S. Wünsch, K. Il'in, N. Smale, Y.-L. Mathis, R. Müller, G. Ulm, G. Wüstefeld, H.-W. Hübers, J. Hänisch, B. Holzapfel, M. Siegel, and A.-S. Müller, Opens external link in new windowNonthermal response of YBCO thin films to picosecond THz pulses, Phys. Rev. B (2012) 85, 174511

[10] A. Hornemann, D. Eichert, S. Flemig, G. Ulm, and B. Beckhoff, Qualifying label components for effective biosensing using advanced high-throughput SEIRA methodology, PCCP (2015) 17 9471

[11] B. Kaestner and V. Kashcheyevs, Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress, Report on Progress (2015) 78, 103901

[12] Hermann, P. et al. Enhancing the sensitivity of nano-FTIR spectroscopy, Opt. Express 25, 16574–16588 (2017)

[13] Fleischmann, C. et al. Thermal stability and relaxation mechanisms in compressively strained Ge0.94Sn0.06 thin films grown by molecular beam epitaxy, J. Appl. Phys. 120, (2016)

[14] A. Hermelink et al., Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy, Analyst 1342, 142 (2017)

[15] A. Hornemann et al. A pilot study on fingerprinting Leishmania species from the Old World using Fourier transform infrared spectroscopy, Anal Bioanal Chem, DOI 10.1007/s00216-017-0655-5 (2017)

[16] Ghassan Faisal Mohsin, Franz-Josef Schmitt, Clemens Kanzler, Jan Dirk Epping, Sabine Flemig, AndreaHornemann, Structural characterization of melanoidin formed from d-glucose and l-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-ToF-MS, Food Chemistry, Volume 245, Pages 761-767, DOI: 10.1016/j.foodchem.2017.11.115 (2018)

[17] Bernd Kästner, C. Magnus Johnson, Peter Hermann, Mattias Kruskopf, Klaus Pierz, Arne Hoehl, Andrea Hornemann, Georg Ulrich, Jakob Fehmel, Piotr Patoka, Eckart Rühl, and Gerhard Ulm, Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains, ACS Omega, 3 (4), pp 4141–4147, DOI: 10.1021/acsomega.7b01931 (2018)

[18] Andrea M. Giovannozzi, Andrea Hornemann, Beatrix Pollakowski-Herrmann, Felicia M. Green, Paul Gunning, Tara L. Salter, Rory T. Steven, Josephine Bunch, Chiara Portesi, Bonnie J. Tyler, Burkhard Beckhoff, Andrea Mario Rossi, A methodological inter-comparison study on the detection of surface contaminant sodium dodecyl sulfate applying ambient-and vacuum-based techniques, DOI:10.1007/s00216-018-1431-x (2018)

[19] B. Kästner, F. Schmähling, A. Hornemann, G. Ulrich, A. Hoehl, M. Kruskopf, K. Pierz, M. B. Raschke, G. Wübbeler, and C. Elster, Compressed sensing FTIR nano-spectroscopy and nano-imaging,Vol. 26, No. 14 | 9 Jul 2018 | OPTICS EXPRESS 18115

To top