Logo of the Physikalisch-Technische Bundesanstalt
Symbolbild "News"

Molecular selfie reveals how a chemical bond breaks

Proton is seen escaping the molecule

21.10.2016

Scientists of the Institute of Photonic Sciences (Barcelona) have monitored the locations of all the atoms of an molecule while one of its bonds breaks and a single proton escapes. The “reaction microscope” used for the experiment was developed at the Max Planck Institute for Nuclear Physics in Heidelberg. The research participants included Prof. Dr. Joachim Ullrich, former Director of the Max Planck Institute for Nuclear Physics in Heidelberg and now President of the Physikalisch-Technische Bundesanstalt. Together with his research group, Dr. Ullrich helped construct the reaction microscope for this experiment in order to completely detect all fragments, and provided his assistance and advice during the complex evaluation of the data.

This schematic diagram depicts how the bonding of an acetylene molecule breaks. Graphic: ICFO/Scixel

Man stelle sich vor, die einzelnen Atome eines Moleküls ließen sich während einer chemischen Reaktion beobachten: Wie sie sich umlagern, um eine neue Substanz zu bilden oder wie Bausteine der DNS sich bewegen und vervielfältigt werden. Diese Fähigkeit würde bisher unerreichte Einsichten bieten, um diese Prozesse besser zu verstehen und möglicherweise zu kontrollieren.

Die simple Idee, den Aufbruch oder die Umwandlung von Molekülen während einer chemischen Reaktion zu beobachten, war bisher unerreichbar, denn sie setzt voraus, alle Atome, die das Molekül bilden, zu verfolgen – und dies mit subatomarer räumlicher Auflösung innerhalb weniger Femtosekunden (10–15 s = ein Millionstel einer Milliardstel Sekunde). Daher klangen derartige „Schnappschüsse“ einer molekularen Reaktion mit der erforderlichen Präzision wie Science Fiction. Vor nunmehr genau 20 Jahren wurde die Idee geboren, die Elektronen des Moleküls selbst zu nutzen, um seine Struktur abzubilden: Man bringe dem Molekül bei – wie wir heute sagen würden – ein „Selfie“ von sich zu machen!

In einer jetzt bei Science publizierten Studie konnten Wissenschaftler des Institute of Photonic Sciences (ICFO) in Barcelona und des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) sowie weiterer Institutionen aus Deutschland, den Niederlanden, Dänemark und den USA einen entscheidenden Durchbruch vermelden. Dem Team gelang die Abbildung des Aufbruchs einer chemischen Bindung in Acetylen (C2H2) innerhalb von 9 Femtosekunden nachdem das Molekül ionisiert wurde. Die Forscher verfolgten sämtliche Atome in einem einzelnen Acetylen-Molekül mit einer räumlichen Präzision von nur 0,05 Ångström (deutlich weniger als ein Atomdurchmesser) mit einer zeitlichen Präzision von 0,6 Femtosekunden. Dabei konnten sie den Aufbruch einer bestimmten einzelnen Bindung des Moleküls auslösen und beobachten, wie ein Proton das Molekül verlässt. Nachdem gezeigt wurde, dass die erforderliche räumliche und zeitliche Auflösung erreicht wurde, um Schnappschüsse der molekularen Dynamik zu erhalten, möchte die Gruppe um Jens Biegert am ICFO diese als nächstes auf andere Moleküle wie Katalysatoren oder biologisch relevante Systeme anwenden.

Das Team in Barcelona entwickelte eine weltweit führende ultraschnelle Laserquelle für den mittleren Infrarot-Bereich und kombinierte diese mit einem Reaktionsmikroskop. Dieses erlaubt eine kinematisch vollständige Erfassung der dreidimensionalen Impulsverteilung der freigesetzten Elektronen und Ionen in Koinzidenz, d. h. es werden alle geladenen Bruchstücke des Moleküls gleichzeitig nachgewiesen und der Reaktion zugeordnet. Entwickelt und gebaut wurde das Reaktionsmikroskop am MPIK in der Gruppe um Robert Moshammer. Im Experiment am ICFO wird zunächst ein einzelnes Acetylen-Molekül mit einem kurzen Laserpuls räumlich ausgerichtet und dann mit einem zweiten ausreichend starken Laserpuls ionisiert. Das freigesetzte Elektron wird vom Laserfeld wieder zum Ursprungs-Molekül zurückgetrieben, wobei es an diesem streut – alles innerhalb von 9 Femtosekunden. Aufgrund seiner quantenmechanischen Welleneigenschaft bildet das Elektron bei diesem Streuprozess das gesamte Molekül ab und erlaubt so eine Rekonstruktion von dessen Struktur.

Mittels einer geschickten Analyse der Daten konnten die Physiker ferner zeigen, dass die Orientierung des Moleküls relativ zur Richtung des elektrischen Feldes des Lasers ganz grundlegend die Dynamik der Reaktion ändert. Bei paralleler Ausrichtung wurde eine Vibration des Moleküls entlang der Feldrichtung beobachtet, während bei senkrechter Ausrichtung eine der C–H-Bindungen aufbrach. In dem Experiment wurde der Aufbruch der Bindung erstmals visualisiert und beobachtet, wie das Proton das C2H22+-Ion verlässt. Zum Erfolg hat auch die großartige Zusammenarbeit zwischen Experimentatoren und Theoretikern, Atomphysikern und Quantenchemikern des ICFO und MPIK, der Physikalisch-Technischen Bundesanstalt, der Kansas State University, des Center for Free Electron Laser Science (DESY/CUI) sowie der Universitäten Jena, Kassel, Aarhus und Leiden beigetragen.