Logo PTB
Gateway for scientists

Science

News

Hardwarekomponenten eines Open-Source-Niedrigfeld-MR-Tomografen: Pulsgenerator, Hochfrequenzverstärker, Sende-/Empfangsumschalter mit Empfangsvorverstärker, Anregungsspule, Gradientenverstärker, x-, y- und z-Gradientenspulen für die räumliche Kodierung und MR-Magnete mit Einsätzen zur Feldhomogenisierung. Ein Kopfphantom dient zur Veranschaulichung der Dimensionen. Die Baupläne werden für alle frei zugänglich veröffentlicht und zur nicht-exklusiven (auch kommerziellen) Nutzung freigegeben.

 

Im Rahmen einer internationalen Kooperation arbeitet die PTB an der Entwicklung von kostengünstigen Magnetresonanztomografen (MRT) mit Veröffentlichung aller technologischen Details als Open-Source-Hardware (OSH). Mit solchen OSH-MRT konnten nun erste Aufnahmen gemacht werden.

 

[ more ]
Schematische Darstellung der Floureszenzanregung einer Nanostruktur, die aus Atomen, verschiedener Elemente (A, B, C) zusammengesetzt ist. Bei Anregung mit einem Röntgenstrahl (E<sub>0</sub>) wird jeweils charakteristische Fluoreszenzstrahlung (E<sub>1</sub>, E<sub>2</sub>) emittiert.

 

In der PTB wurden Methoden zur elementspezifischen Rekonstruktion von periodisch nanostrukturierten Oberflächen optimiert, die für die Herstellung hochmoderner integrierter Schaltkreise verwendet werden. Durch die neuartige Analyse der Röntgenfluoreszenzstrahlung wird es möglich, die räumliche Verteilung von verschiedenen Atomen innerhalb der Nanostrukturen zu bestimmen.

 

[ more ]
Berkovich-Spitze auf einem Silizium-AFM-Cantilever (großes Bild) zusammen mit den Idealabmessungen einer Berkovich-Spitze (oben links) und einer Seitenansicht der gefertigten Spitze (oben rechts). Der Öffnungswinkel beträgt (143 ± 0,5)<sup>o</sup>, was gut mit der Spitzendefinition der ISO-Norm übereinstimmt. Die effektive Spitzenhöhe <em>h</m> beträgt ca. 1&nbsp;μm und ist damit ausreichend für oberflächennahe, mechanische Messungen, z. B. zur Bestimmung des eindringtiefenabhängigen elektromechanischen Verhaltens nanoskaliger Halbleitermaterialien.

 

Der neuartige Picoindenter aus der PTB, der die Spitze eines Rasterkraftmikroskops (AFM) als Eindringkörper verwendet, um Nanomaterialien dimensionell und mechanisch zu charakterisieren, wurde jetzt entscheidend erweitert: Im „Laboratory for Emerging Nanometrology“ (LENA) wurden mithilfe eines fokussierten Ionenstrahls (FIB) pyramidenförmige Berkovich-Spitzen auf AFM-Cantilevern hergestellt, die auch im Picoindenter zum Einsatz kommen können. Im Vergleich zu den herkömmlichen, konisch geformten AFM-Spitzen sind solche Eindringkörper mechanisch stabiler und ermöglichen langfristig schnelle dynamische Messungen sowie aufgrund ihrer hohen Leitfähigkeit auch elektrische Messungen.

 

[ more ]
Schematische Darstellung der Molekül-basierten Einzelphotonenquelle für Anwendungen in der Quantenradiometrie, z. B. für die Kalibrierung eines Einzelphotonendetektors (1, SPAD) über einen Referenz-Detektor (2, analog). Der Wert von g<sup>(2)</sup>(0) = 0,08 bedeutet eine sehr niedrige Wahrscheinlichkeit, dass zwei Photonen gleichzeitig emittiert werden. DBT: Dibenzoterrylen.

 

Einzelphotonenquellen sind sogenannte nicht-klassische Lichtquellen. Anders als Laser oder Glühlampen senden sie das Licht nur als einzelne Quanten (Photonen) aus. Anwendungen dafür finden sich in vielen Bereichen der Quantentechnologie, z. B. in der Quantenabbildung, im Quantencomputing, in der Quantenschlüsselverteilung und in quantenverstärkten optischen Messungen. Außerdem sind sie ideal für bestimmte Bereiche der Radiometrie. Für diese Anwendungen wurde jetzt eine Quelle mit besonders hohem und spektral reinem Photonenfluss entwickelt.

 

[ more ]
Schematisches Schaltbild (stark vereinfacht) einer Josephson-Impedanzmessbrücke kombiniert mit einem Quanten-Hall-Referenzwiderstand (QHR). Der Messstrom wird von zwei Stromquellen (links und rechts) eingespeist, die Spannungsmessung erfolgt quantenbasiert über zwei pulsgetriebene Josephson-Spannungsnormale (U<sub>1</sub> und U<sub>2</sub>). Nach Abgleich der Messbrücke durch Justierung der Spannungsverhältnisse und Phasenwinkel ist die durch den Detektor gemessene Spannung Null und damit das Verhältnis der Impedanzen des Prüflings (Z<sub>DUT</sub>) und des Quanten-Hall-Impedanznormals (Z<sub>QHR</sub>) gleich dem sehr genau bekannten Verhältnis der beiden Brückenspannungen U<sub>1</sub> und U<sub>2</sub>.

 

Die PTB untersucht im Rahmen eines europäischen Metrologieforschungsprojekts die Nutzbarkeit neuartiger Quanten-Hall-Widerstandsnormale auf der Materialbasis von Graphen für die Impedanzmetrologie. Die Arbeiten dienen der Entwicklung quantenbasierter Impedanzmessbrücken für vereinfachte Kalibrierungen elektrischer Wechselspannungsgrößen für den praxisnahen, flexiblen und effizienten Einsatz, zum Beispiel in Kalibrierlaboratorien oder in der Industrie. Erste Messungen zeigten bereits eine sehr gute Reproduzierbarkeit und belegen das Potenzial der neuen Methodik.

 

[ more ]
Übersicht über die Inhalte der Datenbank. Jeder Eintrag entspricht einer Zeile in der Tabelle in zeitlicher Reihenfolge von oben nach unten. Schwarze Pixel zeigen vorhandene Werte an, fehlende Werte bleiben weiß.

 

Eine in der PTB entwickelte Datenbank liefert mehr als 20 000 EKG-Aufnahmen, maschinenlesbare Befunde und Anmerkungen von Kardiologen. Sie wurde vor allem für die Entwicklung maschineller Lernverfahren aufbereitet und ist zu deren besseren Vergleichbarkeit in Trainings- und Testabschnitte organisiert. Die Datenbank mit Namen PTB-XL ist bei PhysioNet öffentlich verfügbar.

 

[ more ]
Die beiden faserbasierten Punktlichtquellen befinden sich auf dem bewegten Objekt. Der Bildsensor registriert das Interferenzmuster, dessen Orientierung den Rollwinkel angibt.

Die PTB hat ein kostengünstiges Verfahren entwickelt, um den Rollwinkel bei hochpräzisen Linearverstellern in der optischen Messtechnik oder der industriellen Fertigung besonders einfach zu messen. Es besteht aus nur zwei Single-Mode-Glasfasern sowie einem herkömmlichen Bildsensor und benötigt keine zusätzliche Optik. Die zwei fest zueinander positionierten Enden der Glasfasern befinden sich auf dem bewegten Objekt, der Bildsensor ist fest im Raum verankert. Die aus den Glasfasern emittierte Laserstrahlung erzeugt ein Interferenzmuster aus parallelen Streifen auf der Sensorfläche. Bei einer Rollbewegung des Objektes dreht sich somit auch das Interferenzmuster auf der Sensorfläche. Der Drehwinkel wird mittels Fourier-Analyse aus dem Streifenmuster berechnet. Der Messbereich von 360° kann mit einer Auflösung von wenigen Winkelsekunden, also etwa 0,001°, erfasst werden. Zudem ist das Verfahren unempfindlich gegenüber Nick- und...

[ more ]
Artistic representation of the ion pair: laser cooled Be<sup>+</sup> (top right) and highly charged Ar<sup>13+</sup> (bottom left)

 

In cooperation with the Max Planck Institute for Nuclear Physics in Heidelberg, the QUEST Institute at PTB has succeeded for the first time in performing precision spectroscopy on highly charged ions. This pioneering experiment makes the field of highly charged ions accessible for research on novel atomic clocks and tests of fundamental physics.

 

[ more ]

 

Scientists from the Physikalisch-Technische Bundesanstalt (PTB) and the Max Planck Institute for Nuclear Physics (MPIK) have carried out pioneering optical measurements of highly charged ions with unprecedented precision. To do this, they isolated a single Ar13 + ion from an extremely hot plasma and brought it practically to rest inside an ion trap together with a laser-cooled, singly charged ion. Employing quantum logic spectroscopy on the ion pair, they have increased the relative precision by a factor of a hundred million over previous methods. This opens up the multitude of highly charged ions for novel atomic clocks and further avenues in the search for new physics. [Nature 578 (2020)]

 

[ more ]

 

A functional quantum computer is one of the most intriguing promises of quantum technology. With significantly increased computing power, quantum computers will be able to solve tasks that conventional computers cannot handle, such as understanding and inventing new materials or pharmaceuticals as well as testing the limits of cryptographic techniques. In order to reduce error rates and provide reliable operations much faster, researchers at Leibniz University Hannover and Physikalisch-Technische Bundesanstalt (PTB) have developed a new method based on trapped ions. Their findings have been published in the latest issue of the scientific journal “Physical Review Letters”. 

 

[ more ]