Logo PTB

Mathematische Modellierung und Datenanalyse

Fachbereich 8.4

Projekte

Advancing measurement uncertainty ̶ comprehensive examples for key international standards (17NRM05 EMUE)

Advancing measurement uncertainty ̶ comprehensive examples for key international standards (17NRM05 EMUE)

 

Zeitraum:07/2018 - 06/2021
Förderung:    European Metrology Programme for Innovation and Research (Opens external link in new windowEMPIR)
Partner:12 Nationale Metrologieinstitute und Designierte Institute
2 Industriepartner und wissenschaftlich-technische Institute
2 Europäische Akkreditierungsbehörde
1 Regulierungsbehörde

 

Dieses Projekt erstellt einen umfassenden Satz an ausgearbeiteten Beispielen, die illustrieren wie die Prinzipien der Messunsicherheitsbestimmung normative und andere Praxis unterstützen können.

Es hat zum Ziel, die harmonisierte Bestimmung der Messunsicherheit nach international anerkannten Standards und Richtlinien in vielen Fachrichtungen des Messens  zu fördern.

Um dieses Ziel zu erreichen, wird das Projekt neue und verbesserte, anpassbare Beispiele und Vorlagen zur Unsicherheitsbestimmung an das Joint Committee for Guides in Metrology (Opens external link in new windowJCGM) als Herausgeber der international anerkannten Richtlinie Guide to the expression of uncertainty in measurement überreichen. Darüber hinaus wird das Projekt Beispiele für etwa 10 Normungsgremien bereitstellen, die besonderen Bezug zu den dort zu entwickelnden Normen haben. EUROLAB wird Projektergebnisse an nationale Verbände weitergeben, die ungefähr 2000 Laboratorien und Konformitätsbewertungsstellen erreichen und Tätigkeiten wie Prüfung, Überprüfung und Zertifizierung durchführen sowie insgesamt 100000 Mitglieder haben. Dadurch wird das Projekt gute Praxis in der Unsicherheitsbestimmung stark verbreiten und dies an einen extrem weiten Kreis an Endnutzern.

 

Weitere Informationen: Opens external link in new windowhier

Multiphase Flow Reference Metrology

Multiphase Flow Reference Metrology

 

Zeitraum:06/2017 - 05/2020
Förderung:    European Metrology Programme for Innovation and Research (EMPIR)
Partner:4 European Metrology Institutes (NEL,CMI,VTT,PTB), 3 Universities, 11 Industrial Partners


Europe, and the world, will be dependent for many decades to come on the production of oil and gas for its underpinning energy needs. Multiphase flow measurement is a fundamental enabling metrology in subsea oil and gas production. However, field measurements exhibit high measurement uncertainty, costing industry billions of euros in financial exposure and production inefficiencies. To improve this situation requires a reference measurement capability that is consistent and comparable across different test laboratories that offer this service. This project will address this need by establishing harmonisation of measurements between multiphase flow reference laboratories.

Software-Toolbox für komplexe Modelle der Messprozesse in der Optik

Software-Toolbox für komplexe Modelle der Messprozesse in der Optik

 

Zeitraum:09/2017 - 08/2020
Förderung:    Bundesministerium für Wirtschaft und Technologie (Opens external link in new windowBMWi)
Partner:Opens external link in new windowJCMwave GmbH

 

Ziel des Verbundprojekts  ist die Entwicklung einer Software-Toolbox, die Unsicherheiten auch für komplexe Modelle des Messprozesses in der Optik schnell und nutzerfreundlich bestimmen kann (Uncertainty Quantification). Dabei soll mit Hilfe spezieller numerischer Methoden der Einfluss von Messunsicherheiten als  Eingangsparameter auf die Ergebnisse einer Simulation oder eines inversen Verfahrens effizient quantifiziert werden. Die so entwickelte Toolbox kann für die Optimierung von Bauteilen und die schnelle Auswertung indirekter Messungen verwendet werden. 

Weitere Informationen: Opens internal link in current windowhier

Ermittlung des Gesundheitszustands von Li-Ionenbatterien

Ermittlung des Gesundheitszustands von Li-Ionenbatterien

 

Zeitraum:08/2016 - 07/2019
Förderung:    Industriepartner
Partner:Industriepartner

 

Im Rahmen der Elektromobilität ist die schnelle Bestimmung des Gesundheitszustands der Batterien von hoher Bedeutung, insbesondere zur genauen Angabe der verbleibenden Reichweite einer Akkuladung. In einer Kooperation mit einem Industriepartner wird in den beiden Fachbereichen „Physikalische Chemie“ und „Mathematische Modellierung und Datenanalyse“ gemeinsam eine statistische Methode zur Bestimmung des Gesundheitszustands weiterentwickelt und erprobt.

Weitere Informationen: Opens internal link in current windowhier

Metrology for multi-modality imaging of impaired tissue perfusion

Metrology for multi-modality imaging of impaired tissue perfusion

 

Zeitraum:07/2016 - 06/2019
Förderung:    European Metrology Programme for Innovation and Research (Opens external link in new windowEMPIR)
Partner:10 European national Metrology Institutes and Research Institutes
1 Industrial partners  ("Collaborators")

 

The aim of this project is to address metrology needs for the health sector by developing a physical standard for quantitative medical imaging applicable to a range of imaging techniques (modalities) and new data analysis techniques for patient care. This will support the reliability and traceability of clinical data and ensures the comparability of diagnostic and treatment information in clinical trials. In addition, the project will investigate metrological approaches for radiation protection to support the health protection of citizens.

Weitere Informationen: Opens external link in new windowhier

Reference algorithms and metrology on aspherical and freeform optical lenses

Reference algorithms and metrology on aspherical and freeform optical lenses

 

Zeitraum:06/2016 - 05/2019
Förderung:    European Metrology Programme for Innovation and Research (Opens external link in new windowEMPIR)
Partner:11 European national Metrology Institutes and Research Institutes
4 Industrial partners  ("Collaborators")

 

Aspheres and freeform surfaces are components used in a variety of optical systems, from medical imaging to astronomy. They deliver better image quality compared to traditional spherical elements and as a result their use is growing rapidly. However, the ability to develop higher-performance aspheres and freeform surfaces is limited by the precision with which the shape of their surface can be measured. Although modern optical polishing techniques can remove material at the nanometre level, measurement techniques are unable to measure with the same degree of precision. This project will build on the work of the previous EMRP project Opens external link in new windowIND10 Form, which achieved measurements below 100 nanometres, by developing new measurement capabilities within European National Measurement Institutes to routinely measure below 30 nanometres. The capabilities developed will strengthen Europe’s position in global optics, and will be used by industry to develop a new level in optical device performance.

Weitere Informationen: Opens external link in new windowhier

Standards and software to maximise end user uptake of NMI calibrations of dynamic force, torque and pressure sensors

Standards and software to maximise end user uptake of NMI calibrations of dynamic force, torque and pressure sensors

 

Zeitraum:07/2015 - 06/2018
Förderung:    European Metrology Programme for Innovation and Research (Opens external link in new windowEMPIR)
Partner:National Physical Laboratory (NPL), Teddington, UK
HBM GmbH (Germany)
Rolls Royce plc (UK)

 

The aim of this project is to maximise uptake by industry end users and the Joint Committee for Guides in Metrology (JCGM) of outputs of EMRP JRP IND09 (Traceable dynamic measurement of mechanical quantities) by providing concrete, specific and directed advice on how to make best use of the results of dynamic calibrations provided by NMIs. 

 

More information can be found on the project website:

Opens external link in new windowhttp://mathmet.org/projects/14SIP08

and the software repository home page:

Opens external link in new windowhttps://github.com/eichstaedtPTB/PyDynamic

Rekonstruktion ortsaufgelöster Farbspektren aus kontunierlichen Zeilenkamera-basierten Messungen

Rekonstruktion ortsaufgelöster Farbspektren aus kontunierlichen Zeilenkamera-basierten Messungen

 

Zeitraum:07/2015 - 06/2018
Förderung:    Bundesministerium für Wirtschaft und Technologie (BMWi)
Partner:Chromasens GmbH

 

In  diesem  Projekt  soll  unter  Ausnutzung  von  in  der  PTB  vorhandenem  Wissen  und Algorithmen gemeinsam mit der Firma Chromasens GmbH ein Verfahren entwickelt werden, welches  basierend  auf  einer  mathematischen  Modellierung  der  Einflussgrößen  eine  robuste und  verlässliche  Rekonstruktion  ortsaufgelöster  Farbspektren  aus  spektral  zerlegten Messungen  liefert.  Ziel  ist  es,  ein    validiertes  Verfahren  zu  entwickeln,  welches  einen routinemäßigen  Einsatz  von  multispektralen  Zeilenkameras  in  industriellen  Anwendungen erlaubt.

Weitere Informationen: Opens internal link in current windowhier

Control of multiscale reaction-diffusion patterns and application to biomembranes and cardiac dynamics

Control of multiscale reaction-diffusion patterns and application to biomembranes and cardiac dynamics

 

Zeitraum:01/2015 - 12/2018
Förderung:    Projekt B5 des Sonderforschungsbereichs 910 ("Kontrolle selbstorganisierender nichtlinearer Systeme")
DFG (German Research Foundation)
Partner:Institute of Theoretical Physics, Technical University of Berlin

 

Multiscale pattern formation refers either to the simultaneous appearance of competing unstable modes with different critical wavelengths or to the interaction of pattern formation with spatial heterogeneities. This project will focus on control strategies in order to obtain desired or suppress unwanted patterns in multiscale reaction-diffusion systems. We plan (i) to study simple generic models to develop appropriate control methods like time delay and nonlocal coupling and (ii) to consider control of patterns on biomembranes as well as during pathological cardiac dynamics as applications for multiscale systems.

Weitere Informationen: Opens external link in new windowhier

Sensor Network Metrology for the Determination of Electrical Grid Characteristics

Sensor Network Metrology for the Determination of Electrical Grid Characteristics

 

Zeitraum:06/2014 - 05/2017
Förderung:    European Metrology Research Programme (EMRP)
Partner:10 Europäische Nationale Metrologieinstitute und Forschungseinrichtungen
7 Industriepartner  ("Collaborators")

 

Stromnetze im Mittel- und Niederspannungsbereich sind zunehmend einer bidirektionalen Lastenverteilung ausgesetzt. Dies erfordert auch auf dieser Ebene eine verlässliche Prognose, Überwachung und Schätzung des Netzzustandes. Da jedoch nur auf der Hochspannungsebene eine vollständige Messinfrastruktur vorhanden ist, erfordert die Bestimmung des Netzzustandes verlässliche mathematische Verfahren für unvollständig bekannte Zustandsraummodelle. Die PTB Arbeitsgruppe 8.42 entwickelt und untersucht daher zusammen mit 16europäischen Partnern geeignete mathematische und statistische Verfahren.

Weitere Informationen: Opens internal link in current windowhier

Multiphase flow metrology in oil and gas production

Multiphase flow metrology in oil and gas production

 

Zeitraum:06/2014 - 05/2017
Förderung:    European Metrology Research Programme (EMRP)
Partner:6 Europäische Nationale Metrologieinstitute und Forschungseinrichtungen
4 Industriepartner  ("Collaborators")

 

Typical multiphase measurement systems can have an uncertainty on component flow rate of 20% or greater under field conditions. The overall aim of the project is to help establish the infrastructure whereby multiphase flowmeters can be more reliably evaluated and/or verified for their application(s) – thereby enabling developers to advance state-of-the-art in flow measurement.To develop an accurate and validated metrological reference network, using test and calibration facilities for multiphase flow.

Weitere Informationen: Opens internal link in current windowhier

Chemical regulation of aggregation and pattern formation of gliding bacteria

Chemical regulation of aggregation and pattern formation of gliding bacteria

 

Zeitraum:04/2014 - 09/2018
Förderung:    DFG (German Research Foundation)
Project C4 within Research Training Group (GRK) 1558 Nonequilibrium Collective Dynamics in Condensed Matter and Biological Systems
Partner:Institute of Theoretical Physics, Technical University of Berlin

 

The multicellular aggregation of microorganisms like bacteria and amoebae is largely controlled by the interplay of physical properties like cell shapte and motility with intracellular processes and the exchange of biochemical signals between the cells. The aim of the project is to develop realistic models for aggregation and pattern formation in myxobacteria at the microscopic (= agent-based models with Langevin dynamics) and macroscopic level (continuum equations for cell densities of reaction-diffusion-advection type). The models shall address basic physical properties (self-propulsion, volume exclusion and nematic alignment) and biochemically regulated internal clocks and the resulting reversal rates of individual cells.

Spatio-temporal pattern formation in reaction-diffusion-advection-mechanics (RDAM) systems

Spatio-temporal pattern formation in reaction-diffusion-advection-mechanics (RDAM) systems

 

Zeitraum:04/2014 - 09/2018
Förderung:    DFG (German Research Foundation)
Project C3 within Research Training Group (GRK) 1558 Nonequilibrium Collective Dynamics in Condensed Matter and Biological Systems
Partner:Institute of Theoretical Physics, Technical University of Berlin

 

RDAM systems include active fluids where mechanical stress involves an active component that is controlled by one or more chemical regulator species which obey reaction-diffusion-advection equations. The project builds on previous work describing pattern formation in non-moving circular droplets with fixed boundaries. The existing model shall be extended to allow for motion of the droplet. This will be achieved by considering the cytoplasm as a viscoelastic fluid and by introducing moving boundary conditions. Phase-field methods will be applied as effective computational alternative to a model with a sharp interface.  The model aims at the description of the dynamics of moving protoplasmic droplets of Physarum polycephalum and shall be compared to experimental observations in this system.

Multidimensional Reflectometry for Industry

Multidimensional Reflectometry for Industry

 

Zeitraum:09/2013 - 08/2016
Förderung:    European Metrology Research Programme (EMRP)
Partner:10 Europäische Nationale Metrologieinstitute und Forschungseinrichtungen

 

The proposed JRP will provide validated and reliable optical measurements and methods with traceability to the SI-system wherever it is practicable to do so for the range of multidimensional reflection measurements. The general objective is to meet the demands from industry to describe the overall macroscopic appearances of modern surfaces by developing and improving methods for their measurement which rightly correlates with the visual sensation. In specific, the project deals with the Goniochromatism, Gloss and Fluorescence properties of dedicated artefacts, which will be investigated in the three main vertical workpackages. The horizontal workpackages address these subjects to the Modelling and Data Analysis and the Human Visual Perception, in order to give an irreducible set of calibration schemes and handling methods.

Weitere Informationen: Opens internal link in current windowhier

Entwicklung von Verfahren zur Charakterisierung integraler Größen aus differentiellen optischen Messungen

Entwicklung von Verfahren zur Charakterisierung integraler Größen aus differentiellen optischen Messungen

 

Zeitraum:08/2013 - 07/2016
Förderung:    Bundesministerium für Wirtschaft und Technologie (BMWi)
TechnoTeam Bildverarbeitung GmbH Ilmenau
Partner:PTB Arbeitsgruppe Photometrie und angewandte Radiometrie
PTB Arbeitsgruppe Hochtemperaturskala
TechnoTeam Bildverarbeitung GmbH Ilmenau

 

In der industriellen optischen Messtechnik werden zunehmend Messverfahren eingesetzt, die eine vollständige Charakterisierung des Messobjektes in Form von differentiellen Messungen liefern. Beispiele hierfür sind kamerabasierte Messungen von räumlichen Temperatur- oder Leuchtdichteverteilungen. Aus den differentiellen Messungen können integrale Größen berechnet werden, die die benötigte Rückführung auf SI Basiseinheiten ermöglichen. Dies erfordert eine Charakterisierung der Genauigkeit der berechneten integralen Größen. Aufgrund der sehr hohen Dimensionalität der differentiellen Messungen sowie deren Korrelation ist dies derzeit in der Industrie allerdings nicht durchführbar. Ziel des Projektes ist es, geeignete Verfahren zu entwickeln, die eine routinemäßige Charakterisierung der integralen Größen ermöglichen.

Frühere Projekte

Novel mathematical and statistical approaches to uncertainty evaluation

Novel mathematical and statistical approaches to uncertainty evaluation

 

Zeitraum:08/2012 - 07/2015
Förderung:    European Metrology Research Programme (EMRP)
Partner:10 Europäische Nationale Metrologieinstitute und Forschungseinrichtungen
1 industriepartner

 

The project develops novel approaches to measurement uncertainty evaluation and enable their consistent application, illustrated by appropriate case studies. The dissemination of these methods is ensured by providing input for future revisions of the Guide to the Expression of Uncertainty in Measurement (GUM), its supplements and other relevant documents and by providing algorithms and software. It focuses on three areas where new uncertainty analysis methods are needed: inverse and regression problems, computationally expensive model functions, conformity assessment and reliable decision-making.

In addition, the project emphasizes application of these methods to challenging areas where a strong need for new uncertainty evaluation methods has been identified. These include new analytical technologies for biochemistry and biotechnology (enzyme-linked immunosorbent assays - ELISA, polymerase chain reaction - PCR), transport processes (fluid flow, thermophysical properties of materials), industry and regulation (scatterometry, fire safety engineering, conformance testing for healthcare products).

Weitere Informationen: Opens external link in new windowhier

Metrology of small structures for the manufacturing of electronic and optical devices

Metrology of small structures for the manufacturing of electronic and optical devices

 

Zeitraum:08/2011 - 07/2014
Förderung:    European Metrology Research Programme (EMRP)
Partner:8 Europäische Nationale Metrologieinstitute und Forschungseinrichtungen
2 Industriepartner

 

Dimensional metrology of small structures is a basic subject important for applications within a wide variety of areas mainly in the semiconductor and optical industries but also in mechanical engineering (e.g. length and angle encoders) as well as in biological and medical industries. Dimensional metrology of high-end laterally structured functional surfaces is a constant challenge due to the progressive minimisation of structures combined with an increasing impact of feature details on the functionality of these surfaces. The development of sophisticated dimensional metrology of structures in the sub micrometer-range is therefore an important condition for the further development of technologies for optics and semiconductor industries.

Scatterometry is a promising measurement technique for dimensional metrology since it is fast, non-destructive and has basically no “resolution limit”. However, so far scatterometry is not capable of performing absolute form measurement. The goal of this project is to overcome this limitation by improving according measurement and data analysis methods. The investigations and results of this project will enable the design, development, characterisation and calibration of a scatterometry reference standard to face the tough specifications demanded nowadays.

Weitere Informationen: Opens internal link in current windowhier

Traceable dynamic measurement of mechanical quantities

Traceable dynamic measurement of mechanical quantities

 

Zeitraum:09/2011 - 08/2014
Förderung:    European Metrology Research Programme (EMRP)
Partner:9 Europäische Nationale Metrologieinstitute und Forschungseinrichtungen
4 Industriepartner

 

The aim of this project is to establish traceability for the three mechanical quantities force, torque and pressure for measurements under dynamic conditions. The required research carried out in this JRP will provide the foundation for a European infrastructure for traceable dynamic measurements of these mechanical quantities.

The JRP-Partners will establish a metrology infrastructure for traceable dynamic measurements of force, pressure and torque, set up and validate primary calibration methods, develop methods for consistent and reliable evaluation of measurement uncertainty, and provide dynamic traceability of the electrical components of the measurement chain.

Weitere Informationen: Opens internal link in current windowhier

Optical and tactile metrology for absolute form characterisation

Optical and tactile metrology for absolute form characterisation

 

Zeitraum:09/2011 - 08/2014
Förderung:    European Metrology Research Programme (EMRP)
Partner:8 Europäische Nationale Metrologieinstitute und Forschungseinrichtungen
4 Industriepartner

 

This project addresses the urgent need of the European optics and precision engineering industry and of basic research institutes for a significant improvement of accuracy and spatial resolution of the “absolute” surface form measurement of flats, aspheres and free-form surfaces. Absolute, in this context, refers to the measurement of optical surfaces delivering the full 3D form. Absolute form data are required, e.g. ,for the manufacturing of high-end asphere optics, strongly curved freeform surfaces used for special optics, for the calibration of measuring systems used in industry for in-production metrology, and for synchrotron and astronomical systems.

Weitere Informationen: Opens internal link in current windowhier

Kontakt

Anschrift

Physikalisch-Technische Bundesanstalt
Abbestraße 2–12
10587 Berlin