Logo der Physikalisch-Technischen Bundesanstalt

Virtuelle Experimente

Arbeitsgruppe 8.42

Übersicht

In einem virtuellen Experiment wird ein Messprozess mathematisch modelliert und auf dem Computer simuliert. Dabei wird angestrebt, das physikalische Experiment möglichst realistisch abzubilden. Mittels virtueller Experimente lassen sich unterschiedliche Szenarien in einfacher Weise durchspielen und Messverfahren können so auf dem Computer entworfen und spezifiziert werden. Darüber hinaus lassen sich mit virtuellen Experimenten die Genauigkeiten realisierter Messsysteme abschätzen. Durch Sensitivitätsanalysen können dominante Unsicherheitsquellen identifiziert und quantitativ untersucht werden, was dann zur Optimierung eines Messsystems genutzt werden kann. Virtuelle Experimente sind auch bei der Entwicklung von Methoden der Datenanalyse für reale Experimente hilfreich. So können unterschiedliche Schätzverfahren unter realistischen Bedingungen verglichen und Annahmen über die Verteilung von Messwerten geprüft werden.

Virtueller Nachbau eines Tilted-Wave Interferometers (links) und eine virtuelle 3D Messung einer optischen Oberfläche (rechts) mittels SimOptDevice.

Forschung

Forschungsschwerpunkte in der Arbeitsgruppe 8.42 der PTB sind virtuelle Experimente für optische Messvorrichtungen und die zugehörige Entwicklung von Datenanalyseverfahren für die Messdatenauswertung. Hierzu wurde die Simulationsumgebung SimOptDevice als Softwarebibliothek entwickelt, mit der mittlerweile eine Vielzahl von Anwendungen für die Formmessung, Photometrie, sowie der Längen- und Koordinatenmesstechnik realisiert worden sind. SimOptDevice wird ständig gepflegt und in seiner Funktionalität erweitert. Ein aktueller Schwerpunkt bei den Anwendungen von SimOptDevice ist das Tilted-Wave Interferometer zur Messung von Asphären- und Freiformoberflächen. Dabei werden Datenanalyseverfahren zur Lösung des dazugehörigen inversen Problems, sowie zur Justage des Messverfahrens entwickelt und mittels virtueller Experimente erprobt. Weitere Forschungsfragestellungen in der Arbeitsgruppe 8.42 der PTB sind die Ermittlung von Messunsicherheiten bei realen Messungen unter Zuhilfenahme virtueller Experimente sowie die Untersuchung von Möglichkeiten, Methoden des „deep learning“ im Zusammenhang mit virtuellen Experimenten einzusetzen. So lässt sich etwa mittels virtueller Experimente eine große Datenbank generieren, die dann für das Trainieren eines neuronalen Netzes zur Auswertung experimenteller Daten genutzt werden kann.

Publikationen

Publikations Einzelansicht

Artikel

Titel: Reconstructing surface profiles from curvature measurements
Autor(en): C. Elster, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz;I. Weingärtner
Journal: Optik - International Journal for Light and Electron Optics
Jahr: 2002
Band: 113
Ausgabe: 4
Seite(n): 154 - 158
DOI: 10.1078/0030-4026-00138
ISSN: 0030-4026
Web URL: http://www.sciencedirect.com/science/article/pii/S0030402604701345
Schlüsselwörter: Runge-Kutta method
Marker: 8.42, Form
Zusammenfassung: Summary Recently, the measurement of curvature has been suggested as a promising new technique for the highly accurate determination of large-area surface profiles on the nanometer scale. It was shown that the curvature can be measured with highest accuracy and high lateral resolution. However, the reconstruction of surface profiles from curvature data involves the numerical solution of an ordinary differential equation for which initial or boundary values must be specified. This paper investigates the accuracy with which surface profiles can be reconstructed from curvature data. The stability of the reconstructions is examined with respect to the presence of measurement noise and the accuracy of the initial values. The assessment of the reconstruction accuracy is based on an analytical solution (up to numerical integration) derived for the case when the measurement results are given in Cartesian coordinates, and on numerical results in the polar case. The results presented for the latter case allow, in particular, conclusions to be drawn regarding the minimum accuracy of data and initial values required for reconstructing aspheres from curvature measurements with nanometer accuracy.

Zurück zur Listen Ansicht