Logo der Physikalisch-Technischen Bundesanstalt

Virtuelle Experimente

Arbeitsgruppe 8.42

Übersicht

In einem virtuellen Experiment wird ein Messprozess mathematisch modelliert und auf dem Computer simuliert. Dabei wird angestrebt, das physikalische Experiment möglichst realistisch abzubilden. Mittels virtueller Experimente lassen sich unterschiedliche Szenarien in einfacher Weise durchspielen und Messverfahren können so auf dem Computer entworfen und spezifiziert werden. Darüber hinaus lassen sich mit virtuellen Experimenten die Genauigkeiten realisierter Messsysteme abschätzen. Durch Sensitivitätsanalysen können dominante Unsicherheitsquellen identifiziert und quantitativ untersucht werden, was dann zur Optimierung eines Messsystems genutzt werden kann. Virtuelle Experimente sind auch bei der Entwicklung von Methoden der Datenanalyse für reale Experimente hilfreich. So können unterschiedliche Schätzverfahren unter realistischen Bedingungen verglichen und Annahmen über die Verteilung von Messwerten geprüft werden.

Virtueller Nachbau eines Tilted-Wave Interferometers (links) und eine virtuelle 3D Messung einer optischen Oberfläche (rechts) mittels SimOptDevice.

Forschung

Forschungsschwerpunkte in der Arbeitsgruppe 8.42 der PTB sind virtuelle Experimente für optische Messvorrichtungen und die zugehörige Entwicklung von Datenanalyseverfahren für die Messdatenauswertung. Hierzu wurde die Simulationsumgebung SimOptDevice als Softwarebibliothek entwickelt, mit der mittlerweile eine Vielzahl von Anwendungen für die Formmessung, Photometrie, sowie der Längen- und Koordinatenmesstechnik realisiert worden sind. SimOptDevice wird ständig gepflegt und in seiner Funktionalität erweitert. Ein aktueller Schwerpunkt bei den Anwendungen von SimOptDevice ist das Tilted-Wave Interferometer zur Messung von Asphären- und Freiformoberflächen. Dabei werden Datenanalyseverfahren zur Lösung des dazugehörigen inversen Problems, sowie zur Justage des Messverfahrens entwickelt und mittels virtueller Experimente erprobt. Weitere Forschungsfragestellungen in der Arbeitsgruppe 8.42 der PTB sind die Ermittlung von Messunsicherheiten bei realen Messungen unter Zuhilfenahme virtueller Experimente sowie die Untersuchung von Möglichkeiten, Methoden des „deep learning“ im Zusammenhang mit virtuellen Experimenten einzusetzen. So lässt sich etwa mittels virtueller Experimente eine große Datenbank generieren, die dann für das Trainieren eines neuronalen Netzes zur Auswertung experimenteller Daten genutzt werden kann.

Publikationen

Publikations Einzelansicht

Artikel

Titel: Solution to the Shearing Problem
Autor(en): C. Elster;I. Weingärtner
Journal: Applied Optics
Jahr: 1999
Band: 38
Ausgabe: 23
Seite(n): 5024
Optical Society of America
DOI: 10.1364/AO.38.005024
ISSN: 0003-6935
Web URL: http://www.osapublishing.org/viewmedia.cfm?uri=ao-38-23-5024&seq=0&html=true
Schlüsselwörter: Interferometry,Optical inspection,Phase measurement
Marker: 8.42,Form
Zusammenfassung: Lateral shearing interferometry is a promising reference-free measurement technique for optical wave-front reconstruction. The wave front under study is coherently superposed by a laterally sheared copy of itself, and from the interferogram difference measurements of the wave front are obtained. From these difference measurements the wave front is then reconstructed. Recently, several new and efficient algorithms for evaluating lateral shearing interferograms have been suggested. So far, however, all evaluation methods are somewhat restricted, e.g., assume a priori knowledge of the wave front under study, or assume small shears, and so on. Here a new, to our knowledge, approach for the evaluation of lateral shearing interferograms is presented, which is based on an extension of the difference measurements. This so-called natural extension allows for reconstruction of that part of the underlying wave front whose information is contained in the given difference measurements. The method is not restricted to small shears and allows for high lateral resolution to be achieved. Since the method uses discrete Fourier analysis, the reconstructions can be efficiently calculated. Furthermore, it is shown that, by application of the method to the analysis of two shearing interferograms with suitably chosen shears, exact reconstruction of the underlying wave front at all evaluation points is obtained up to an arbitrary constant. The influence of noise on the results obtained by this reconstruction procedure is investigated in detail, and its stability is shown. Finally, applications to simulated measurements are presented. The results demonstrate high-quality reconstructions for single shearing interferograms and exact reconstructions for two shearing interferograms.

Zurück zur Listen Ansicht