Logo der Physikalisch-Technischen Bundesanstalt

AG 5.11 Literaturverweise [1]-[16]

Opens internal link in current windowzur Startseite der Arbeitsgruppe 5.11


[1]    L. Doering u. a., „High-speed microprobe for roughness measurements in high-aspect-ratio microstructures“, Meas. Sci. Technol., Bd. 28, Nr. 3, S. 034009, März 2017.

[2]    „Kalibrierung der Biegesteifigkeit von AFM-Cantilevern mit MEMS-Referenzfederaktoren - PTB.de“. [Online]. Einsehbar unter: www.ptb.de/cms/ptb/fachabteilungen/abt5/archiv-der-nachrichten-aus-abteilung-5/archiv-der-forschungsnachrichten.html. [Zugegriffen: 20-Apr-2017].

[3]    S. Gao u. a., „A comb-drive scanning-head array for fast scanning-probe microscope measurements“, 2011, S. 806626-806626–8.

[4]    Z. Li, S. Gao, U. Brand, K. Hiller, N. Wollschläger, und F. Pohlenz, „Note: Nanomechanical characterization of soft materials using a micro-machined nanoforce transducer with an FIB-made pyramidal tip“, Rev. Sci. Instrum., Bd. 88, Nr. 3, S. 036104, März 2017.

[5]    S. Gao, U. Brand, S. Hahn, und K. Hiller, „An active reference spring array for in-situ calibration of the normal spring constant of AFM cantilevers“, in SPIE 9517 Smart sensors, Actuators and MEMS VII; and Cyber Physical Systems, 2015, S. 951719.

[6]    P. Thomsen-Schmidt, „Characterization of a traceable profiler instrument for areal roughness measurement“, Meas. Sci. Technol., Bd. 22, Nr. 9, S. 094019, Sep. 2011.

[7]    Z. Li, U. Brand, und T. Ahbe, „Towards quantitative modelling of surface deformation of polymer micro-structures under tactile scanning measurement“, Meas. Sci. Technol., Bd. 25, S. 044010 (7pp), 2014.

[8]    Z. Li, U. Brand, und T. Ahbe, „Step height measurement of microscale thermoplastic polymer specimens using contact stylus profilometry“, Precis. Eng., Bd. 45, S. 110–117, Juli 2016.
[9]    U. Brand u. a., „Smart sensors and calibration standards for high precision metrology“, 2015, Bd. Proc. SPIE 9517, S. 95170V–95170V–10.

[10]    G. Hamdana u. a., „Double-meander spring silicon piezoresistive sensors as microforce calibration standards“, Opt. Eng., Bd. 55, Nr. 9, S. 091409, Mai 2016.

[11]    U. Brand, Z. Li, S. Gao, S. Hahn, und K. Hiller, „Silicon double spring for the simultaneous calibration of probing forces and deflections in the micro range“, Meas. Sci. Technol., Bd. 27, Nr. 1, S. 015601, Jan. 2016.

[12]    U. Brand u. a., „Sensors and calibration standards for precise hardness and topography measurements in micro- and nanotechnology - IEEE Xplore Document“, in Micro-Nano-Integration; 6. GMM-Workshop; Proceedings of, 2016, S. 68–72.

[13]    V. Nesterov, „Facility and methods for the measurement of micro and nano forces in the range below 10-5 N with a resolution of 10-12 N (development concept)“, Meas. Sci. Technol., Bd. 17, S. 360–366, 2006.

[14]    V. Nesterov, S. Buetefisch, und L. Koenders, „A nanonewton force facility to test Newton’s law of gravity at micro- and submicrometer distances“, Ann. Phys., Bd. 525, Nr. 8–9, S. 728–737, Sep. 2013.

[15]    D. Nies u. a., „Experimental setup for the direct measurement of a light-induced attractive force between two metal bodies“, 2016, S. 99222L.

[16]    D. Shapiro, D. Nies, O. Belai, M. Wurm, und V. Nesterov, „Optical field and attractive force at the subwavelength slit“, Opt. Express, Bd. 24, Nr. 14, S. 15972, Juli 2016.


Opens internal link in current windowzur Startseite der Arbeitsgruppe 5.11