Logo der Physikalisch-Technischen Bundesanstalt
Symbolbild "Zeitschriften"

Neues „Pendel“ für die Ytterbium-Uhr

Besonders interessant für:
  • Entwickler von optischen Uhren
  • Atom-Spektroskopie

In der PTB wurde ein „verbotener“ Übergang im Ytterbium-Ion untersucht und dessen Frequenz mit bisher unerreichter Genauigkeit gemessen. Unter Nutzung dieses neuen Überganges hat die Ytterbium-Uhr eine relative Messunsicherheit von 7 · 10–17 erreicht.

Ionenfalle der Ytterbium-Uhr in der PTB

Optische Übergänge sind das moderne Pendant zum Pendel einer mechanischen Uhr. Je schneller es schwingt, desto genauer kann die Uhr sein. Bei Atomuhren ist das „Pendel“ jene Strahlung, die den Übergang zwischen zwei atomaren Zuständen unterschiedlicher Energie anregt. Bei dem Experiment in der PTB haben die Wissenschaftler sich einem besonderen verbotenen Übergang gewidmet. „Verboten“ bedeutet in der Quantenmechanik, dass der Sprung zwischen den beiden Energiezuständen des Atoms wegen der Erhaltung von Symmetrie und Drehimpuls nahezu unmöglich ist. Der angeregte Zustand kann dann sehr langlebig sein: Im hier untersuchten Fall beträgt die Lebensdauer des F-Zustands im Ytterbium-Ion Yb+ etwa sechs Jahre. Wegen dieser langen Lebensdauer lässt sich bei der Laseranregung dieses Zustands eine äußerst schmale Resonanz beobachten, die in ihrer Linienbreite nur von der Qualität des verwendeten Lasers abhängt. Eine schmale Resonanzlinie ist eine wichtige Voraussetzung für eine genaue optische Uhr. Am britischen NPL ist bereits 1997 erstmalig die Laseranregung dieses Yb+-F-Zustands vom Grundzustand aus gelungen. Da der Übergang jedoch stark verboten ist, wird zu seiner Anregung eine relativ hohe Laserintensität benötigt. Dies stört die Elektronenstruktur des Ions insgesamt und führt zu einer Verschiebung der Resonanzfrequenz, sodass eine darauf basierende Atomuhr einen von der Laserintensität abhängigen Gang aufweisen würde. In der PTB konnte jetzt gezeigt werden, dass sich durch abwechselnde Anregung des Ions mit zwei unterschiedlichen Laserintensitäten die unbeeinflusste Resonanzfrequenz sehr genau bestimmen lässt. Dadurch wurde es möglich, andere in Atomuhren häufig auftretende Frequenzverschiebungen – z. B. durch elektrische Felder oder die Wärmestrahlung der Umgebung – zu untersuchen. Es zeigte sich, dass diese im Fall des Yb+-F-Zustands unerwartet klein sind, was auf die besondere elektronische Struktur des Zustands zurückzuführen ist. Das bildet einen entscheidenden Vorteil für die Weiterentwicklung dieser Atomuhr. Bei den Experimenten in der PTB wurde die relative Unsicherheit der Yb+-Frequenz mit 7 · 10–17 bestimmt. Dies entspricht einer Unsicherheit der Atomuhr von nur etwa 30 Sekunden über das Alter des Universums.

Beide Gruppen in NPL und PTB haben die Frequenz des Yb+-Übergangs mit ihren Caesium-Uhren gemessen und die Ergebnisse stimmen im Rahmen der Unsicherheiten (1 · 10–15 bzw. 8 · 10–16), die im Wesentlichen von den Caesium-Uhren bestimmt werden, überein. In einem kürzlich bewilligten Forschungsprojekt im European Metrology Research Programme werden beide Institute mit weiteren europäischen Partnern in Zukunft noch intensiver bei der Entwicklung dieser optischen Uhr zusammenarbeiten. Beim Yb+-Ion ist von besonderem Interesse, dass es gleich zwei für optische Uhren geeignete Übergänge besitzt: Weniger stark verboten, aber ebenfalls sehr präzise lässt sich die Anregung des D-Niveaus bei 436 nm Wellenlänge nutzen. Damit ergibt sich die Möglichkeit, durch Frequenzvergleiche der beiden Übergänge in einem Ion die Genauigkeit der optischen Uhr zu untersuchen, ohne Bezug auf eine Caesium- Uhr nehmen zu müssen.

Ansprechpartner:

Ekkehard Peik
Fachbereich 4.4 Zeit und Frequenz
Telefon: (0531) 592-4400
E-Mail: ekkehard.peik(at)ptb.de