
Großer maschinenlesbarer EKG-Datensatz für Entwicklung und Test maschineller Lernverfahren veröffentlicht
(Gemeinsame Pressemitteilung des Fraunhofer Heinrich-Hertz-Instituts (HHI) und der PTB) PTB-XL ist der bisher größte öffentlich zugängliche EKG-Datensatz mit mehr als 20000 Aufnahmen
Künstliche Intelligenz ist in der Medizin ein großer Trend. Gerade in Bereichen wie bei der EKG-Auswertung, bei denen sehr viel Erfahrung gefordert ist, kann Deep Learning potenziell seine großen Vorteile ausspielen. Diese Algorithmen erkennen Muster in großen Datenmengen, wie es bisher nur erfahrene Kardiologinnen und Kardiologen können, und können den Arzt oder die Ärztin bei der zeitaufwendigen Überprüfung der vielen EKG-Signale unterstützen. Existierende Algorithmen mit exzellenter Performance wurden dazu typischerweise auf nicht-öffentlichen Datensätzen trainiert und entziehen sich damit der Nutzung der breiteren wissenschaftlichen Community, während öffentliche Datensätze bis dato zu klein zum Training und insbesondere für eine verlässliche Evaluation maschineller Lernalgorithmen waren. Zudem ist die Evaluierungsmethodik nicht standardisiert, was für eine mangelnde Vergleichbarkeit der Ergebnisse sorgt. Im Rahmen des EU-EMPIR-Projektes Medalcare arbeiten die Wissenschaftlerinnen und Wissenschaftler des Fraunhofer Heinrich-Hertz-Institut (HHI) zusammen mit Kollegen von der Physikalisch-Technischen Bundesanstalt (PTB) daran, verschiedene maschinelle Lernalgorithmen anhand dieses großen Datensatzes zu vergleichen. Eine erste Benchmark-Studie zu diesem Thema ist als Preprint erschienen und vergleicht gängige Klassifikationsalgorithmen anhand verschiedener Aufgaben und klar definierten Evaluationsprozeduren.
Die publizierten Ergebnisse sollen als Anregung für weitere Wissenschaftlerinnen und Wissenschaftler dienen, die mit der Datenbank weiterarbeiten wollen. Denn bevor die Deep-Learning-Algorithmen breite Anwendung in der klinische Praxis Anwendung finden können, werden noch einige Untersuchungen folgen müssen – beispielsweise zur Frage, welchen Einfluss Begleiterkrankungen auf die EKG-Daten haben.
(es/ptb)
Die wissenschaftlichen Veröffentlichungen
Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I. Lunze, Wojciech Samek, Tobias Schaeffter: PTB-XL, a large publicly available electrocardiography dataset. Scientific Data 7, 154 (2020), https://doi.org/10.1038/s41597-020-0495-6
Nils Strodthoff, Patrick Wagner, Tobias Schaeffter, Wojciech Samek. Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL. arXiv preprint 2004.13701. 2020 https://arxiv.org/abs/2004.13701
Ansprechpartner beim HHI
Dr. Nils Strodthoff, Gruppe Maschinelles Lernen, Abteilung Videokodierung und Maschinelles Lernen, Fraunhofer Heinrich-Hertz-Institut, Einsteinufer 37, 10587 Berlin, Telefon: (030) 31002-104, E-Mail: nils.strodthoff(at)hhi.fraunhofer.de
Ansprechpartner bei der PTB
Prof. Dr. Tobias Schäffter, Leiter der Abteilung 8 Medizinphysik und metrologische Informationstechnik, Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Telefon: (030) 3481-7343, E-Mail: tobias.schaeffter(at)ptb.de